Adams spectral sequences, twisted deformation theory, and nonabelian higher-order Hochschild cohomology.

A. Salch

February 2012
Outline

Adams spectral sequences.

Stable representation semirings.

Some important example cases.

Classical (untwisted) deformation theory of modules.

Hochschild (co)homology.
Let E be an E_∞-ring spectrum, M a spectrum. There exists a spectral sequence

$$E_2^{s,t} \simeq \text{Ext}_{E^*E}^s(E^*(M), \Sigma^t \pi_*(E)) \Rightarrow \pi_{t-s}(\hat{M}_E),$$

the E-Adams spectral sequence. (Modulo convergence issues. Everything is okay if M, E are both connective.)
Let E be an E_∞-ring spectrum, M a spectrum. There exists a spectral sequence

$$E_2^{s,t} \cong \text{Ext}^s_{E^*E}(E^*(M), \Sigma^t \pi_*(E)) \Rightarrow \tilde{\pi}_{t-s}(\hat{M}_E),$$

the E-Adams spectral sequence. (Modulo convergence issues. Everything is okay if M, E are both connective.)

Under appropriate conditions, these objects get more identifiable; e.g., if $E = HF_p$ and A is the mod p Steenrod algebra, it looks like

$$E_2^{s,t} \cong \text{Ext}^s_A(H^*(M; F_p), F_p) \Rightarrow \tilde{\pi}_{t-s}(\hat{M}).$$
Under some conditions this picture simplifies even further. Let $E = H\mathbb{F}_2$, and let $A(n)$ be the subalgebra of A generated by Sq^1, \ldots, Sq^{2^n}. Let $E(n)$ be the (exterior) subalgebra of A generated by the first n Quillen primitives $Q_0, Q_1, \ldots, Q_{n-1}$.
Under some conditions this picture simplifies even further. Let $E = H\mathbb{F}_2$, and let $A(n)$ be the subalgebra of A generated by Sq^1, \ldots, Sq^{2^n}. Let $E(n)$ be the (exterior) subalgebra of A generated by the first n Quillen primitives $Q_0, Q_1, \ldots, Q_{n-1}$.

Then we have isomorphisms

\[
H^*(HZ; \mathbb{F}_2) = A \otimes_{A(0)} \mathbb{F}_2, \\
H^*(ku; \mathbb{F}_2) = A \otimes_{E(1)} \mathbb{F}_2, \\
H^*(ko; \mathbb{F}_2) = A \otimes_{A(1)} \mathbb{F}_2, \\
H^*(BP\langle n \rangle; \mathbb{F}_2) = A \otimes_{E(n)} \mathbb{F}_2, \\
H^*(tmf; \mathbb{F}_2) = A \otimes_{A(2)} \mathbb{F}_2.
\]
As a result of these isomorphisms we can use a change of rings

$$\text{Ext}^*_A(A \otimes_B M, \mathbb{F}_2) \cong \text{Ext}^*_B(M, \mathbb{F}_2)$$

to reduce the computation of the cohomology of the Adams
\(E_2\)-term for computing 2-complete integral homology, 2-complete
real or complex \(K\)-theory, 2-complete \(\text{tmf}\), etc., to the computation
of cohomology over \(B\). Here \(B\) is any of the various
sub-Hopf-algebras of \(A\) mentioned above: \(E(n)\) or \(A(n)\).
Outline

Adams spectral sequences.

Stable representation semirings.

Some important example cases.

Classical (untwisted) deformation theory of modules.

Hochschild (co)homology.
Stable representation semirings

are a convenient tool for organizing the various Adams E_2-term computations.
Stable representation semirings

are a convenient tool for organizing the various Adams E_2-term computations.

Let k be a field, A a graded, co-commutative Hopf algebra over k. Then we let $\text{Stab}(A)$ be the category of graded A-modules of finite dimension over k, modulo the following equivalence relation on hom-sets: two maps $f, g : M \to N$ of A-modules are declared stably equivalent if $f - g$ factors through a projective A-module.

If A is connective and either finite-dimensional over k or a sequential colimit of finite-dimensional Hopf algebras over k, then the higher Ext_A groups with coefficients in M depend only on the isomorphism class of M in $\text{Stab}(A)$. So we can think of $\text{Ext}_i^A(-, k)$, for $i > 0$, as a functor on $\text{Stab}(A)$.
Stable representation semirings

are a convenient tool for organizing the various Adams E_2-term computations.

Let k be a field, A a graded, co-commutative Hopf algebra over k. Then we let $\text{Stab}(A)$ be the category of graded A-modules of finite dimension over k, modulo the following equivalence relation on hom-sets: two maps $f, g: M \to N$ of A-modules are declared stably equivalent if $f - g$ factors through a projective A-module.

If A is connective and either finite-dimensional over k or a sequential colimit of finite-dimensional Hopf algebras over k, then the higher Ext_A groups with coefficients in M depend only on the isomorphism class of M in $\text{Stab}(A)$. So we can think of $\text{Ext}_A^i(-, k)$, for $i > 0$, as a functor on $\text{Stab}(A)$.
Furthermore, $\text{Stab}(A)$ has a direct sum operation and a tensor product \otimes_k operation, inherited from these operations on A-modules. The direct sum operation is respected by the higher Ext groups:

$$\text{Ext}_A^i(M \oplus N, k) \cong \text{Ext}_A^i(M, k) \oplus \text{Ext}_A^i(N, k),$$

while the situation for the tensor product (over k) is somewhat more complicated (but still salvageable).
Furthermore, $\text{Stab}(A)$ has a direct sum operation and a tensor product \otimes_k operation, inherited from these operations on A-modules. The direct sum operation is respected by the higher Ext groups:

$$\text{Ext}^i_A(M \oplus N, k) \cong \text{Ext}^i_A(M, k) \oplus \text{Ext}^i_A(N, k),$$

while the situation for the tensor product (over k) is somewhat more complicated (but still salvageable).

Let’s write $\text{StabRep}(A)$ for the semiring of isomorphism classes in $\text{Stab}(A)$.
So one way to get a good picture of the category of 2-complete finite spectra is to regard \(\text{StabRep}(E(n)) \) as an kind of approximation, “seen through the eyes of \(BP\langle n \rangle \),” to the category of finite spectra. If you compute \(\text{Ext}^*_E(n)(M, \mathbb{F}_2) \) for a set of additive generators \(M \in \text{StabRep}(E(n)) \), then you know all the possible Adams \(E_2 \)-terms converging to \(\hat{\pi}_*(BP\langle n \rangle \wedge X)_2 \), for finite spectra \(X \). If you can compute \(\text{Ext}^*_E(n)(M, \mathbb{F}_2) \) for at least a set of multiplicative generators \(M \) of \(\text{StabRep}(E(n)) \), you’re still in extremely good shape. Similarly with \(ko \) and \(A(1) \) or \(tmf \) and \(A(2) \) in place of \(BP\langle n \rangle \) and \(E(n) \).
Or, for a commutative ring spectrum E, one can define and try to compute $\text{StabRep}(E^*E)$, and this is a kind of approximation to the category of finite spectra as well; again, if you can compute $\text{Ext}_{E^*E}^*(M, \pi_*(E))$ for generators M of $\text{StabRep}(E^*E)$, you know all the E-Adams E_2-terms converging to $\pi_*(\hat{X}_E)$ for finite spectra X. (You still don’t know exactly which E^*E-modules actually are the E-cohomology of spectra; that’s another problem entirely, the realization problem.)
Or, for a commutative ring spectrum E, one can define and try to compute $\text{StabRep}(E^*E)$, and this is a kind of approximation to the category of finite spectra as well; again, if you can compute $\text{Ext}_{E^*E}^*(M, \pi_*(E))$ for generators M of $\text{StabRep}(E^*E)$, you know all the E-Adams E_2-terms converging to $\pi_*(\hat{X}_E)$ for finite spectra X.

(You still don’t know exactly which E^*E-modules actually are the E-cohomology of spectra; that’s another problem entirely, the \textit{realization problem}.)
Outline

Adams spectral sequences.

Stable representation semirings.

Some important example cases.

Classical (untwisted) deformation theory of modules.

Hochschild (co)homology.
Finite-dimensional cocommutative Hopf algebras over a field can be written canonically as extensions of etale Hopf algebras by connective Hopf algebras:

$$1 \to A^0 \to A \to \pi_0 A \to 1.$$

As a consequence, connective graded Hopf algebras and etale Hopf algebras (i.e., twists of finite group rings) are the important families of Hopf algebras to try to understand.
Finite-dimensional cocommutative Hopf algebras over a field can be written canonically as extensions of etale Hopf algebras by connective Hopf algebras:

\[1 \rightarrow A^0 \rightarrow A \rightarrow \pi_0 A \rightarrow 1. \]

As a consequence, connective graded Hopf algebras and etale Hopf algebras (i.e., twists of finite group rings) are the important families of Hopf algebras to try to understand.

The group ring example which is most important to topology, which the rest of this talk won’t be about, is as follows: when \(F \) is a height \(n \) formal group over \(\overline{\mathbb{F}}_p \), one has an \(E_\infty \)-ring spectrum \(E(F) \) equipped with an action of \(\text{Aut}(F) \) by \(E_\infty \)-ring spectrum automorphisms.
Evaluated on a finite spectrum X, $E(F)^*(X)$ is a p-adic Banach representation of $\text{Aut}(F)$. Some open conjectures in p-adic Hodge theory state that specifying such a p-adic representation of $\text{Aut}(F)$ should be equivalent to specifying a p-adic representation of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. (The numerical data attached to such a representation (the local L- and ϵ-factors) should be closely related, through denominators of their special values, to the orders of groups appearing in certain spectral sequences converging to $\pi_*(X)$ or $\pi_*(L_{K(n)}X)$; this is what “topological Langlands correspondences” are supposed to be about.)
Evaluated on a finite spectrum X, $E(F)^*(X)$ is a p-adic Banach representation of $\text{Aut}(F)$. Some open conjectures in p-adic Hodge theory state that specifying such a p-adic representation of $\text{Aut}(F)$ should be equivalent to specifying a p-adic representation of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. (The numerical data attached to such a representation (the local L- and ϵ-factors) should be closely related, through denominators of their special values, to the orders of groups appearing in certain spectral sequences converging to $\pi_*(X)$ or $\pi_*(L_{K(n)}X)$; this is what “topological Langlands correspondences” are supposed to be about.)

In order to actually prove such a thing, one wants to compute

$$\text{StabRep}(\overline{\mathbb{F}}_p[\text{Aut}(F)]) \cong \text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-1}, v_n-1)),$$

and then “deform” this computation to

$$\text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-1})), \text{ then to }$$

$$\text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-2})), \text{ and so on; this mimics how we do the computations in cohomology.}$$
Evaluated on a finite spectrum X, $E(F)^*(X)$ is a p-adic Banach representation of $\text{Aut}(F)$. Some open conjectures in p-adic Hodge theory state that specifying such a p-adic representation of $\text{Aut}(F)$ should be equivalent to specifying a p-adic representation of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. (The numerical data attached to such a representation (the local L- and ϵ-factors) should be closely related, through denominators of their special values, to the orders of groups appearing in certain spectral sequences converging to $\pi_*(X)$ or $\pi_*(L_{K(n)}X)$; this is what “topological Langlands correspondences” are supposed to be about.)

In order to actually prove such a thing, one wants to compute

$\text{StabRep}(\overline{\mathbb{F}}_p[\text{Aut}(F)]) \cong \text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-1}, v_n-1))$,

and then “deform” this computation to

$\text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-1}))$, then to

$\text{StabRep}(E(F)^*E(F)/(p, v_1, \ldots, v_{n-2}))$, and so on; this mimics how we do the computations in cohomology. And at the first stage one can compare one’s results with known constructions of mod p Langlands correspondences, then try to understand how the correspondences change under deformation.
This is a tall order, though.
This is a tall order, though.

We begin with a more tractable case, in which we try to compute $\text{StabRep}(A)$ for A connective, rather than a group ring. Specifically, let A be a sub-Hopf-algebra of the Steenrod algebra. (This case is still hard enough that Margolis writes that it “is a very difficult problem in general.”)
Let’s start with the extension of Hopf algebras over \mathbb{F}_2:

$$1 \rightarrow E(1) \rightarrow A(1) \rightarrow E(Sq^2) \rightarrow 1.$$
Let’s start with the extension of Hopf algebras over \(\mathbb{F}_2 \):

\[1 \to E(1) \to A(1) \to E(Sq^2) \to 1. \]

The stable representation semirings on the ends are computable by “elbow grease”:

\[
\text{StabRep}(E(Sq^2)) \cong \mathbb{N}[\Sigma^{\pm 1}],
\]

\[
\text{Stab Rep}(E(e_1, e_2)) \cong \mathbb{N} \left[\Sigma^{\pm 1}, \{ L(i, \delta_0, \delta_1) : i \in \mathbb{N}, \delta_0, \delta_1 \in \{0, 1\} \} \right] \text{ modulo relations},
\]
...where the relations are as follows:

\[
L(0, 0, 0) = 1,
L(i, 0, 0)L(j, 0, 0) = L(i + j, 0, 0),
L(i, 0, 0)L(j, 0, 1) = L(j, 0, 1),
L(i, 0, 0)L(j, 1, 0) = \sum^j L(j, 1, 0),
L(i, 0, 0)L(j, 1, 1) = L(j, 1, 1),
L(i, 0, 1)L(j, 1, 0) = 0,
L(i, 0, 1)L(j, 1, 1) = \sum^{j+1} L(i, 0, 1),
L(i, 1, 0)L(j, 1, 1) = \sum L(i, 1, 0),
L(i, 1, 1)L(j, 1, 1) = \sum L(i + j + 1, 1, 1),
L(i, 0, 1)L(j, 0, 1) = L(i, 0, 1)(1 + \sum^{j+1}) \text{ if } i \leq j,
L(i, 1, 0)L(j, 1, 0) = L(i, 1, 0)\sum(1 + \sum^{j-1}) \text{ if } i \leq j.
\]
Now given an $E(Sq^2)$-module M, you’d like to know how many $A(1)$-modules N there are, such that $N \otimes_{A(1)} E(Sq^2) \cong M$.
Now given an $E(Sq^2)$-module M, you’d like to know how many $A(1)$-modules N there are, such that $N \otimes_{A(1)} E(Sq^2) \cong M$.

In other words, you’d like to know the preimage of $[M] \in \text{Rep}(E(Sq^2))$ under the induction map $\text{Rep}(A(1)) \to \text{Rep}(E(Sq^2))$.
Now given an $E(Sq^2)$-module M, you’d like to know how many $A(1)$-modules N there are, such that $N \otimes_{A(1)} E(Sq^2) \cong M$.

In other words, you’d like to know the preimage of $[M] \in \text{Rep}(E(Sq^2))$ under the induction map $\text{Rep}(A(1)) \to \text{Rep}(E(Sq^2))$.

If the extension

$$1 \to E(1) \to A(1) \to E(Sq^2) \to 1$$

weren’t twisted—in other words, if $A(1)$ were isomorphic to $E(1) \otimes_{\mathbb{F}_2} E(Sq^2)$ as a Hopf algebra—then we could use classical deformation theory of modules.
Outline

- Adams spectral sequences.
- Stable representation semirings.
- Some important example cases.
- Classical (untwisted) deformation theory of modules.
- Hochschild (co)homology.
Let k be a field, A an associative unital k-algebra, M an A-module. We have the extension of rings

$$E(x) \rightarrow A \otimes_k E(x) \rightarrow A,$$

and we’d like to know the set of $A \otimes_k E(x)$-modules N such that N/x is isomorphic to M and such that the underlying $E(x)$-module of N is isomorphic to $M \otimes_k E(x) \cong M \oplus M\{x\}$, up to isomorphism of $A \otimes_k E(x)$-modules.
Let k be a field, A an associative unital k-algebra, M an A-module. We have the extension of rings

$$E(x) \rightarrow A \otimes_k E(x) \rightarrow A,$$

and we’d like to know the set of $A \otimes_k E(x)$-modules N such that N/x is isomorphic to M and such that the underlying $E(x)$-module of N is isomorphic to $M \otimes_k E(x) \cong M \oplus M\{x\}$, up to isomorphism of $A \otimes_k E(x)$-modules.

This set is in bijection with $HH^1(A, \text{End}_k(M))$.
The bijection works like this: if \(A \xrightarrow{\xi} \text{End}_k(M \oplus M\{x\}) \) gives us the desired \(A \)-action on \(M \oplus M\{x\} \), then write \(\xi \) as

\[
\xi(a)(m_0 + m_1x) = \xi_0(a)(m_0 + m_1x) + \xi_1(a)(m_0 + m_1x)x.
\]

Unitality and associativity of the \(A \)-action determine \(\xi_0(a)(m_0) \), \(\xi_0(a)(m_1x) \), and \(\xi_1(a)(m_1x) \) uniquely; but \(\xi_1(a)(m_0) \) isn’t determined, and associativity of the \(A \)-action forces \(\xi_1 : A \rightarrow \text{End}_k(M) \) to be a Hochschild 1-cocycle.
The bijection works like this: if $A \xrightarrow{\xi} \text{End}_k(M \oplus M\{x\})$ gives us the desired A-action on $M \oplus M\{x\}$, then write ξ as

$$\xi(a)(m_0 + m_1x) = \xi_0(a)(m_0 + m_1x) + \xi_1(a)(m_0 + m_1x)x.$$

Unitality and associativity of the A-action determine $\xi_0(a)(m_0)$, $\xi_0(a)(m_1x)$, and $\xi_1(a)(m_1x)$ uniquely; but $\xi_1(a)(m_0)$ isn’t determined, and associativity of the A-action forces $\xi_1 : A \rightarrow \text{End}_k(M)$ to be a Hochschild 1-cocycle.

Isomorphism of $A \otimes_k E(x)$-modules gives exactly the relation of two such 1-cocycles being related by a coboundary.
The bijection works like this: if $A \xrightarrow{\xi} \text{End}_k(M \oplus M\{x\})$ gives us the desired A-action on $M \oplus M\{x\}$, then write ξ as

$$\xi(a)(m_0 + m_1x) = \xi_0(a)(m_0 + m_1x) + \xi_1(a)(m_0 + m_1x)x.$$

Unitality and associativity of the A-action determine $\xi_0(a)(m_0)$, $\xi_0(a)(m_1x)$, and $\xi_1(a)(m_1x)$ uniquely; but $\xi_1(a)(m_0)$ isn’t determined, and associativity of the A-action forces $\xi_1 : A \rightarrow \text{End}_k(M)$ to be a Hochschild 1-cocycle.

Isomorphism of $A \otimes_k E(x)$-modules gives exactly the relation of two such 1-cocycles being related by a coboundary. These $A \otimes_k E(x)$-modules are called first-order deformations of M.
Outline

Adams spectral sequences.

Stable representation semirings.

Some important example cases.

Classical (untwisted) deformation theory of modules.

Hochschild (co)homology.
Here we’re using the standard Hochschild cochain complex. If A is an associative unital k algebra and M is an A-bimodule, the Hochschild cochain complex is

$$\text{hom}_k(k, M) \xrightarrow{d^0} \text{hom}_k(A, M) \xrightarrow{d^1} \text{hom}_k(A \otimes_k A, M) \xrightarrow{d^2} \ldots$$

where

$$d^n f(a_0 \otimes \cdots \otimes a_n) = a_0 f(a_1 \otimes \cdots \otimes a_n) + \sum_{i=1}^{n} (-1)^n f(a_0 \otimes \cdots \otimes a_{i-1} a_i \otimes \cdots \otimes a_n)$$

$$+ (-1)^{n+1} f(a_0 \otimes \cdots \otimes a_{n-1}) a_n.$$
It’s also worth describing the standard Hochschild chain complex:

\[M \xleftarrow{d_0} M \otimes_k A \xleftarrow{d_1} M \otimes_k A \otimes_k A \xleftarrow{d_2} \ldots \]

where

\[d_n(m \otimes a_1 \otimes \cdots \otimes a_n) = ma_1 \otimes a_2 \otimes \cdots \otimes a_n \]

\[+ \sum_{i=1}^{n-1} (-1)^i m \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots a_n + (-1)^n a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1}. \]
It’s not hard to see that the Hochschild chain complex is really the Dold-Kan construction applied to some simplicial abelian group. Namely, if A is flat over k, then $HH_*(A, A) \cong \pi_*(S^1 \otimes HA)$, where the S^1 is any simplicial model for the circle, and the tensoring is using the usual tensoring of commutative Hk-algebras over simplicial sets.
It’s not hard to see that the Hochschild chain complex is really the Dold-Kan construction applied to some simplicial abelian group. Namely, if A is flat over k, then $HH_*(A, A) \cong \pi_*(S^1 \otimes HA)$, where the S^1 is any simplicial model for the circle, and the tensoring is using the usual tensoring of commutative Hk-algebras over simplicial sets.

This is really concrete! (Time to draw pictures using chalk.)
Now if X is any simplicial set, $\pi_*(X \otimes A)$ is the “higher-order Hochschild homology” defined by Pirashvili and studied by him and others. For example:

$$S^1 \otimes A \cong THH(A, A),$$

$$\operatorname{colim}_n \Omega^n(S^n \otimes A) \cong TAQ(A, A).$$
Now if X is any simplicial set, $\pi_\ast(X \otimes A)$ is the "higher-order Hochschild homology" defined by Pirashvili and studied by him and others. For example:

$$S^1 \otimes A \cong THH(A, A),$$

$$\colim_n \Omega^n(S^n \otimes A) \cong TAQ(A, A).$$

Does higher-order Hochschild (co)homology bear some relationship to deformations of modules?
Given an extension of Hopf algebras over a field k

$$1 \to E(n) \to A \to B \to 1,$$

where $E(n)$ is exterior on $n+1$ generators, and a B-module M, by a *twisted $n+1$-dimensional first-order deformation of M* we mean an A-module N such that $N \otimes_A B = M$ and the underlying $E(n)$-module of N is just $M \otimes_k E(n)$.
Given an extension of Hopf algebras over a field k

$$1 \to E(n) \to A \to B \to 1,$$

where $E(n)$ is exterior on $n + 1$ generators, and a B-module M, by a twisted $n + 1$-dimensional first-order deformation of M we mean an A-module N such that $N \otimes_A B = M$ and the underlying $E(n)$-module of N is just $M \otimes_k E(n)$.

(The “twist” is by the Singer monodromy action of B on $E(n)$.)
In the case of the extension

\[1 \to E(1) \to A(1) \to E(Sq^2) \to 1, \]

the monodromy action is \(Sq^2(Q_0) = Q_1 \) and \(Sq^2(Q_1) = 0. \)
In the case of the extension

\[1 \to E(1) \to A(1) \to E(Sq^2) \to 1, \]

the monodromy action is \(Sq^2(Q_0) = Q_1 \) and \(Sq^2(Q_1) = 0. \)

This “wants to be” classified by a cocycle in a cochain complex corresponding to \(K\text{III} \otimes E(Sq^2) \), with coefficients in \(\text{End}(M) \).
However, $\text{End}(M)$ is a *non-symmetric* bimodule.
However, $\text{End}(M)$ is a non-symmetric bimodule.

The existing definitions of higher-order Hochschild (co)homology only make sense with coefficients in a symmetric bimodule.
However, $\text{End}(M)$ is a \textit{non-symmetric} bimodule.

The existing definitions of higher-order Hochschild (co)homology only make sense with coefficients in a \textit{symmetric} bimodule.

And for good reason: they often cannot exist with coefficients in a nonsymmetric bimodule. (Example with S^2 drawn on chalkboard.)
Suppose X is a simplicial pointed set, k a field, A an associative unital k-algebra, M an A-bimodule with left action ϕ_ℓ and right action ϕ_r. For each integer $i \leq 1$ and each nonnegative integer $j \leq i$, let $\phi_{i,j} : M \otimes_k A \to M$ be a map of k-modules, and suppose that $\phi_{i,0} = \phi_r$ and $\phi_{i,i} = \phi_\ell^\text{op}$ for all i. Suppose further that each $\phi_{i,j}$ is unital, that is, $\phi_{i,j}(m \otimes 1) = m$ for any m.
Let X be a simplicial pointed finite set; we write X_i^\times for the set of non-basepoint elements in the pointed set X_i. Choose a total ordering on X_i^\times for each i. Let $(A \otimes X).$ be the functor $\mathcal{O}^{\text{op}} \to \text{Mod}(A)$ defined as follows:
Let X be a simplicial pointed finite set; we write X_i^\times for the set of non-basepoint elements in the pointed set X_i. Choose a total ordering on X_i^\times for each i. Let $(A \otimes X.)$ be the functor $\mathcal{O}^{\text{op}} \to \text{Mod}(A)$ defined as follows:

- $(A \otimes X.)_i$ consists of the tensor product $M \otimes_k A \otimes_k \cdots \otimes_k A$, with one tensor factor of A for each non-basepoint element in X_i. We will write $m \otimes \{a_x\}_{x \in X_i^\times}$ for the element of $(A \otimes X.)_i$ whose component in the tensor factor M is $m \in M$ and whose component in the tensor factor of A corresponding to a non-basepoint element $x \in X_i^\times$ is a_x.

The jth degeneracy map $s_j : (A \otimes X.)_i \to (A \otimes X.)_{i+1}$ sends $m \otimes \{a_x\}_{x \in X_i^\times}$ to the element $m \otimes \{b_y\}_{y \in X_{i+1}^\times}$, where

$$b_y = \begin{cases}
 a_x & \text{if } s_j(x) = y \text{ in } X. \\
 1 & \text{if } y \neq s_j(x) \text{ for all } x \in X_i.
\end{cases}$$

This formula for the degeneracy is well-defined since at most one i-simplex has jth degeneracy a given $i + 1$-simplex, since the degeneracy maps of X must admit the face maps as sections and hence the degeneracy maps are monomorphisms.
The jth face map $d_j : (A \otimes X.)_i \to (A \otimes X.)_{i-1}$ sends
$m \otimes \{b_y\}_{y \in X_i^x} \text{ to } n \otimes \{a_x\}_{x \in X_{i-1}^x}$, where

\[n = \phi_{i,j}(m \otimes \text{(ordered product of all } b_y \text{ such that } d_j(y) \text{ is the basepoint in } X_{i-1})) \]

\[a_x = \text{ordered product of all } b_y \text{ such that } d_j(y) = x. \]

Here the ordering is the ordering on the set of i-simplices $y \in X_i$.
Now does this define a simplicial abelian group? And does its chain-homotopy equivalence class depend on the choice of ordering or on the $\phi_{i,j}$?
Now does this define a simplicial abelian group? And does its chain-homotopy equivalence class depend on the choice of ordering or on the $\phi_{i,j}$?

We must verify five simplicial identities for $(X \otimes A)$:

\begin{align*}
 d_k d_j &= d_{j-1} d_k \text{ if } k < j, \quad (1) \\
 d_k s_j &= s_{j-1} d_k \text{ if } k < j, \quad (2) \\
 d_j s_j &= \text{id} = d_{j+1} s_j, \quad (3) \\
 d_k s_j &= s_j d_{k-1} \text{ if } k > j + 1, \quad (4) \\
 s_k s_j &= s_{j+1} s_k \text{ if } k \leq j. \quad (5)
\end{align*}