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1. Introduction.

A posteriori error estimates have become standard in modern engineering and scientific

computation. There are two types of popular error estimators: the residual type (see,

e.g., [2, 4]) and the recovery type (see, e.g., [21]). The most representative recovery type

error estimator is the Zienkiewicz-Zhu error estimator, especially the estimator based on

gradient patch recovery by local discrete least-squares fitting [22, 23]. The method is now

widely used in engineering practice for its robustness in a posteriori error estimates and its

efficiency in computer implementation. It is a common belief that the robustness of the ZZ

estimator is rooted in the superconvergence property of the associated gradient recovery

under structured meshes. Superconvergence properties of the ZZ recovery based on local

least-squares fitting are proven by Zhang [17] for all popular elements under rectangular

mesh, by Li-Zhang [11] for linear element under strongly regular triangular meshes, and by

Zhang-Victory [18] for tensor product element under strongly regular quadrilateral meshes.

While there is a sizable literature on theoretical investments for residual type error esti-

mators (see, e.g., [1, 3, 10, 14] and reference therein), there have not been many theoretical
∗The work of this author was supported in part by the National Science Foundation grants DMS-9706949

and Center for Computational Mathematics and Applications, Penn State University.
†The work of this author was supported in part by the National Science Foundation grants DMS-0074301,
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results on recovery type error estimators. Nevertheless, the recovery type error estimators

perform astonishingly well even for unstructured grids. The current paper intends to ex-

plain this phenomenon. We observe that for an unstructured mesh, when adaptive is used,

a mesh refinement will usually bring in some kind of local structure. It is then reasonable

to assume that for most of the domain, every two adjacent triangles form an O(h1+α) ap-

proximate parallelogram. Under this assumption, we are able to establish superconvergence

of the gradient recovery operator for three popular methods, weighted averaging, local L2-

projection, and the ZZ patch recovery. Furthermore, by utilizing an integral identity for

linear element on one triangular element developed by Bank and Xu [5], we are able to

generalize their superconvergence result between the finite element solution and the linear

interpolation from O(h2) regular grid to O(h1+α) regular grid. Finally, we are able to prove

asymptotic exactness of the three recovery error estimators.

The topic of a posteriori error estimate has recently attracted more and more attention

in the scientific community, see, e.g., [5, 6, 7, 9, 16, 20], also see recent books [1, 3] for some

general discussions. The literature regarding finite element superconvergence theory can be

found in the following books [8, 10, 12, 15, 19].

2. Geometry Identities of A Triangle. In this section, we shall generalize the result in

[5] for α = 1 to all α > 0. Following the argument in [5], we consider in Figure 1, a triangle

τ with vertices pt
k = (xk, yk), 1 ≤ k ≤ 3, oriented counterclockwise, and corresponding

nodal basis functions (barycentric coordinates) {φk}3
k=1. Let {ek}3

k=1 denote the edges of

element τ , {θk}3
k=1 the angles, {nk}3

k=1 the unit outward normal vectors, {tk}3
k=1 the unit

tangent vectors with counterclockwise orientation, {`k}3
k=1 the edge lengths, and {dk}3

k=1

the perpendicular heights. Let p̃ be the point of intersection for the perpendicular bisectors

of the three sides of τ . Let |sk| denote the distance between p̃ and side k. If τ has no obtuse

angles, then the sk will be nonnegative. Otherwise, the distance to the side opposite the

obtuse angle will be negative.

Let Dτ be a symmetric 2× 2 matrix with constant entries. We define

ξk = −nk+1 · Dτnk−1.

The important special case Dτ = I corresponds to −∆, and in this case ξk = cos θk.

Let qk = φk+1φk−1 denote the quadratic bump function associated with edge ek and let

ψk = φk(1− φk).
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Figure 1: Parameters associated with the triangle τ

The following fundamental identity is proved in [5] for vh ∈ P1(τ):

∫

τ
∇(u− uI) · Dτ∇vh =

3∑

k=1

∫

ek

ξkqk

2 sin θk

{
(`2

k+1 − `2
k−1)

∂2u

∂t2
k

+ 4|τ | ∂2u

∂tk∂nk

}
∂vh

∂tk

−
∫

τ

3∑

k=1

`kξk

2 sin2 θk

{
`k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ `k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh

∂tk
, (2.1)

where uI ∈ P1(τ) is the linear interpolation of u on τ .

We say that two adjacent triangles (sharing a common edge) form an O(h1+α) (α > 0)

approximate parallelogram if the lengths of any two opposite edges differ only by O(h1+α).

Definition: The triangulation Th = T1,h∪T2,h is said to satisfy Condition (α, σ) if there

exist positive constants α and σ such that: Every two adjacent triangles inside T1,h form

an O(h1+α) parallelogram and

Ω̄1,h ∪ Ω̄2,h = Ω̄, |Ω2,h| = O(hσ), Ω̄i,h ≡
⋃

τ∈Ti,h

τ̄ , i = 1, 2.

Remark. There are two important ingredients in an automatic mesh generation code.

One, called swap diagonal, changes the direction of some diagonal edges in order to obtain

near parallel directions for adjacent element edges and to make as many nodes as possible

have six triangles attached. Another, known as Lagrange smoothing, iteratively relocates

nodes to place each node near a mesh symmetry center (see condition (3.1) in Section 3).

Clearly, both swap diagonal and Lagrange smoothing are intended to make every two

adjacent triangles form an O(h1+α) parallelogram. Eventually, only a small portion of
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elements (including boundary elements) do not satisfy this condition. These elements then

belong to Ω2,h, which has a small measure. Therefore, Condition (α, σ) is a reasonable

condition in practice and can be satisfied by most meshes produced by automatic mesh

generation codes.

Denote Vh ⊂ H1(Ω), the C0 linear finite element space associated with Th.

Lemma 2.1. Assume that Th satisfy Condition (α, σ). Let Dτ be a piecewise constant

matrix function defined on Th, whose elements Dτij satisfy

|Dτij | . 1, |Dτij −Dτ ′ij | . hα, i = 1, 2; j = 1, 2.

Here τ and τ ′ are a pair of triangles sharing a common edge. Then for any vh ∈ Vh

∣∣∣∣∣∣
∑

τ∈Th

∫

τ
∇(u− uI) · Dτ∇vh

∣∣∣∣∣∣
. h1+ρ(‖u‖3,Ω + |u|2,∞,Ω)|v|1,Ω, ρ = min(α,

σ

2
,
1
2
), (2.2)

where uI ∈ Vh is the interpolation of u.

Proof: Applying (2.1),

∑

τ∈Th

∫

τ
∇(u− uI) · Dτ∇vh = I1 + I2 (2.3)

where

I1 =
∑

τ∈Th

3∑

k=1

∫

ek

ξkqk

2 sin θk

{
(`2

k+1 − `2
k−1)

∂2u

∂t2
k

+ 4|τ | ∂2u

∂tk∂nk

}
∂vh

∂tk

I2 = −
∑

τ∈Th

∫

τ

3∑

k=1

`kξk

2 sin2 θk

{
`k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ `k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh

∂tk

I2 is easily estimated by

|I2| . h2||u||3,Ω|vh|1,Ω. (2.4)

To estimate I1, we separate all interior edges into two different groups. E1 is the set of edges

e such that the two adjacent triangles sharing e form an O(h1+α) approximate parallelogram

and E2 is the set of the remaining interior edges. The set of all interior edges is given by

E = E1 + E2.
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For each e ∈ E , there are two triangles, say τ and τ ′, that share e as a common edge.

Denote, with respect to τ ,

αe =
ξk

2 sin θk
(`2

k+1 − `2
k−1), βe =

ξk

2 sin θk
4|τ |,

and with respect to τ ′,

α′e =
ξk′

2 sin θk′
(`2

k′+1 − `2
k′−1), β′e =

ξk′

2 sin θk′
4|τ ′|.

Taking n and t to correspond to τ , we can write

I1 = I11 + I12 + I13,

where

I1j =
∑

e∈Ej

∫

e
qe

{
(αe − α′e)

∂2u

∂t2 + (βe − β′e)
∂2u

∂t∂n

}
∂vh

∂t

for j = 1, 2, and

I13 =
∑

e⊂∂Ω

∫

e
qe

{
αe

∂2u

∂t2 + βe
∂2u

∂t∂n

}
∂vh

∂t
.

It is easy to see that, if vh = 0 on ∂Ω, then I13 = 0. Otherwise, we have the following

estimate:

|I13| . h3/2|u|2,∞,∂Ω|vh|1,Ω. (2.5)

Setting z = t and z = n, we estimate
∣∣∣∣
∫

e
qe

∂2u

∂t∂z

∂vh

∂t

∣∣∣∣ . h−1|u|2,∞,Ω

∫

τ
|∇vh|. (2.6)

By definition, for e ∈ E1, α′e = αe(1 + O(hα)) and β′e = βe(1 + O(hα)). Therefore

|αe − α′e| . h2+α, |βe − β′e| . h2+α.

Combining this with (2.6), we have

|I11| . h1+α|u|2,∞,Ω

∫

Ω
|∇vh| . h1+α|u|2,∞,Ω|vh|1,Ω. (2.7)

Now we turn to the estimate for I12. Since adjacent elements in Ω2,h do not form an

O(h1+α) approximate parallelogram, we simply estimate

|αe − α′e| ≤ |αe|+ |α′e| . h2, |βe − β′e| ≤ |βe|+ |β′e| . h2.
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Similar to (2.7), this leads to

|I12| . h|u|2,∞,Ω

∑

τ∈T2,h

∫

τ
|∇vh| . h|u|2,∞,Ω‖∇vh‖0,Ω2,h

hσ/2.

Combining this with (2.5) and (2.7) leads to

|I1| . h1+ρ|u|2,∞,Ω|vh|1,Ω. (2.8)

Finally, applying (2.4) and (2.8) to (2.3), we obtain (2.2). 2

3. Gradient Recovery Operators. We define Nh as the nodal set of a quasi-uniform

triangulation Th. Given z ∈ Nh, we consider an element patch ω around z where we choose

as the origin of a local coordinates. Under this coordinate system, we let (xj , yj) be the

barycenter of a triangle τj ⊂ ω, j = 1, 2, . . . ,m. We require that one of the following two

geometric conditions be satisfied for α ≥ 0:

1
m

m∑

j=1

(xj , yj) = O(h1+α)(1, 1). (3.1)

m∑

j=1

|τj |
|ω| (xj , yj) = O(h1+α)(1, 1). (3.2)

Here we use (xj , yj) to represent a vector in conditions (3.1) and (3.2).

Remark. Condition (α, σ) implies both conditions (3.1) and (3.2) for z ∈ Nh ∩ Ω1,h.

Indeed, conditions (3.1) and (3.2) are trivially (with α = ∞) satisfied by uniform meshes

of the Regular pattern, the Union Jack pattern, and the Criss-Cross pattern, and allow

an O(h1+α) deviation from those meshes. For example, a strongly regular mesh is an

O(h2) deviation from a uniform mesh of the regular pattern. Note that the condition (3.1)

depends only on relative positions of the barycenters of the triangles and is independent of

the shapes, sizes, and numbers of those triangles.

A boundary node z usually leads to α = 0. However, if z is an interior node with α = 0,

then there are no restrictions and we have a completely unstructured mesh around z.

Let uI ∈ Vh be the linear interpolation of a given function u. We shall discuss a gradient

recovery operator Gh and prove superconvergent property between ∇u and GhuI .

The value of GhuI is first determined at a vertex, and then linearly interpolated over

the whole domain. There are three popular ways to generate GhuI at a vertex z.
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a) Weighted averaging.

GhuI(z) =
m∑

j=1

|τj |
|ω| ∇uI(xj , yj). (3.3)

b) Local L2-projection. We seek linear functions pl ∈ P1(ω) (l = 1, 2), such that
∫

ω
[pl(x, y)− ∂luI(x, y)]q(x, y)dxdy = 0, ∀q ∈ P1(ω), l = 1, 2. (3.4)

Then we define GhuI(z) = (p1(0, 0), p2(0, 0)).

c) Local discrete least-squares fitting proposed by Zienkiewicz-Zhu [22]. We seek linear

functions pl ∈ P1(ω) (l = 1, 2), such that

m∑

j=1

[pl(xj , yj)− ∂luI(xj , yj)]q(xj , yj) = 0, ∀q ∈ P1(ω), l = 1, 2. (3.5)

Then we define GhuI(z) = (p1(0, 0), p2(0, 0)).

Note that c) is a discrete version of b). The existence and uniqueness of the minimizers

in b) and c) can be found in [11, Lemma 1]. The following theorem generalizes the result

in [11] from α = 1 to α > 0.

Theorem 3.1. Let ω be an element patch around a node z ∈ Nh, let u ∈ W 3∞(ω), and

let GhuI(z) be produced by either the local L2-projection or the weighted averaging under

condition (3.2), or by the local discrete least-squares fitting under condition (3.1). Then

|GhuI(z)−∇u(z)| . h1+α‖u‖3,∞,ω.

Proof: a) For the weighted averaging, we have

m∑

j=1

|τj |
|ω| ∂luI(xj , yj)− ∂lu(0, 0)

=
m∑

j=1

|τj |
|ω| ∂l(uI − u)(xj , yj) +

m∑

j=1

|τj |
|ω| [∂lu(xj , yj)− ∂lu(0, 0)]

=
m∑

j=1

|τj |
|ω| ∂l(uI − u)(xj , yj) +∇∂lu(0, 0) ·

m∑

j=1

|τj |
|ω| (xj , yj) + R1(u),

where, by the Taylor expansion,

|R1(u)| . h2|u|3,∞,ω.
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Since the barycenter is the derivative superconvergent point for the linear interpolation,

then

|∂l(uI − u)(xj , yj)| . h2|u|3,∞,ω, j = 1, 2, . . . ,m.

Recall the condition (3.2), and we derive

|∇∂lu(0, 0) ·
m∑

j=1

|τj |
|ω| (xj , yj)| . h1+α|u|2,∞,ω.

Therefore,

|
m∑

j=1

|τj |
|ω| ∂luI(xj , yj)− ∂lu(0, 0)| . h1+α‖u‖3,∞,ω. (3.6)

b) For the local L2-projection, we set q = 1 in (3.4) to obtain

m∑

j=1

|τj |pl(xj , yj) =
m∑

j=1

|τj |∂luI(xj , yj).

Therefore,

pl(0, 0)−
m∑

j=1

|τj |
|ω| ∂luI(xj , yj) = pl(0, 0)−

m∑

j=1

|τj |
|ω| pl(xj , yj) = −∇pl(0, 0) ·

m∑

j=1

|τj |
|ω| (xj , yj).

Using (see [11, Lemma 2])

|∇pl(0, 0)| . ‖u‖3,∞,ω, (3.7)

and condition (3.2), we obtain,

|pl(0, 0)−
m∑

j=1

|τj |
|ω| ∂luI(xj , yj)| . h1+α‖u‖3,∞,ω. (3.8)

Combining (3.6) and (3.8), we have proved

|pl(0, 0)− ∂lu(0, 0)| . h1+α‖u‖3,∞,ω. (3.9)

c) For the local discrete least-squares fitting, we set q = 1 in (3.5) to obtain

m∑

j=1

pl(xj , yj) =
m∑

j=1

∂luI(xj , yj).

Therefore,

pl(0, 0)− 1
m

m∑

j=1

∂luI(xj , yj) = pl(0, 0)− 1
m

m∑

j=1

pl(xj , yj) = − 1
m
∇pl(0, 0) ·

m∑

j=1

(xj , yj).
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Using (3.7) and condition (3.1), we obtain

|pl(0, 0)− 1
m

m∑

j=1

∂luI(xj , yj)| . h1+α‖u‖3,∞,ω. (3.10)

Next,

1
m

m∑

j=1

∂luI(xj , yj)− ∂lu(0, 0)

=
1
m

m∑

j=1

∂l(uI − u)(xj , yj) +
1
m

m∑

j=1

[∂lu(xj , yj)− ∂lu(0, 0)]

=
1
m

m∑

j=1

∂l(uI − u)(xj , yj) +
1
m
∇∂lu(0, 0) ·

m∑

j=1

(xj , yj) + R2(u),

with |R2(u)| . h2|u|3,∞,ω. Therefore,

| 1
m

m∑

j=1

∂luI(xj , yj)− ∂lu(0, 0)| . h1+α‖u‖3,∞,ω. (3.11)

Combining (3.10) and (3.11), we obtain (3.9) for the current case. 2

Theorem 3.2. The recovery operator Gh satisfies

Ghv(z) =
m∑

j=1

cj∇v(xj , yj),
m∑

j=1

cj = 1,

in all three cases unconditionally. Furthermore, cj > 0 for

a) the weighted averaging unconditionally;

b) the local L2-projection under the condition (3.2);

c) the local discrete least-squares fitting under the condition (3.1).

Proof: The assertion is obvious for the weighted averaging case.

Choose v = x + y, then the minimizer p1 = 1 and p2 = 1 in both cases b) and c).

Therefore,

Ghv(z) = (1, 1) =
m∑

j=1

cj∇(x + y) =
m∑

j=1

cj(1, 1).

Now we let pl(x, y) = a0 + a1x + a2y. Then for the local discrete least-squares fitting, ai’s

are given by



m
∑

j xj
∑

j yj∑
j xj

∑
j x2

j

∑
j xjyj∑

j yj
∑

j xjyj
∑

j y2
j







a0

a1

a2


 =




∑
j ∂luh(xj , yj)∑

j xj∂luh(xj , yj)∑
j yj∂luh(xj , yj)


 , (3.12)
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Note that ∑

j

x2
j = O(h2),

∑

j

xjyj = O(h2),
∑

j

y2
j = O(h2);

and under condition (3.1),

∑

j

xj = O(h1+α),
∑

j

yj = O(h1+α).

By scaling argument we see that

a1 = O(hα−1), a2 = O(hα−1).

Therefore,

a0 =
1
m

∑

j

∂luh(xj , yj)− a1

m

∑

j

xj − a2

m

∑

j

yj

=
∑

j

cj∂luh(xj , yj)

with

cj =
1
m

+ O(h2α) > 0.

A similar argument shows that

cj =
|τj |
|ω| + O(h2α) > 0

for the local L2-projection when condition (3.2) is satisfied. 2

Under the given condition, the recovered gradient at a vertex z is a convex combination

of gradient values on the element patch surrounding z.

4. Superconvergence of the Recovery Operators. We consider the non-self-adjoint

problem: find u ∈ H1(Ω) such that

B(u, v) =
∫

Ω
[(D∇u + bbbu) · ∇v + cuv] = f(v), ∀v ∈ H1(Ω). (4.1)

Here D is a 2 × 2 symmetric, positive definite matrix, and f(·) is a linear functional.

We assume that all the coefficient functions are smooth, and the bilinear form B(·, ·) is

continuous and satisfies the inf-sup condition on H1(Ω). These conditions insure that (4.1)

has a unique solution.
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The finite element solution uh ∈ Vh satisfies

B(uh, vh) = f(vh) ∀vh ∈ Vh. (4.2)

To insure a unique solution for (4.2), we further assume the inf-sup condition of B be

satisfied on Vh.

We define the piecewise constant matrix function Dτ in terms of the diffusion matrix D
as follows:

Dτij =
1
|τ |

∫

τ
Dij dx.

Note that Dτ is symmetric and positive definite.

Theorem 4.1. Let the solution of (4.1) satisfy u ∈ H3(Ω)∩W 2∞(Ω), let uh be the solution

of (4.2) and uI ∈ Vh be the linear interpolation of u. Assume that the triangulation Th

satisfies Condition (α, σ). Then

‖uh − uI‖1,Ω . h1+ρ(‖u‖3,Ω + |u|2,∞,Ω), ρ = min(α,
1
2
,
σ

2
).

Proof: We begin with the identity

B(u− uI , vh) =
∑

τ∈Th

∫

τ
∇(u− uI) · Dτ∇vh dx +

∑

τ∈Th

∫

τ
∇(u− uI) · (D −Dτ )∇vh dx

+
∫

Ω
(u− uI)(b · ∇vh + cv) dx = I1 + I2 + I3.

The first term I1 is estimated using Lemma 2.1. I2 and I3 can be easily estimated by

|I2|+ |I3| . h2||u||2,Ω||v||1,Ω.

Thus

|B(u− uI , vh)| . h1+ρ (||u||3,Ω + |u|2,∞,Ω) ||vh||1,Ω.

We complete the proof using the inf-sup condition in

||uh − uI ||1,Ω . sup
vh∈Vh

B(uh − uI , vh)
||vh||1,Ω

= sup
vh∈Vh

B(u− uI , vh)
||vh||1,Ω

. h1+ρ (||u||3,Ω + |u|2,∞,Ω) . 2

Theorem 4.2. Let the solution of (4.1) satisfy u ∈ W 3∞(Ω), let uh be the solution of (4.2),

and let Gh be a recovery operator defined by one of the three: a) the weighted averaging,
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b) the local L2-projection, and c) the local discrete least-squares fitting. Assume that the

triangulation Th satisfies Condition (α, σ). Then

‖∇u−Ghuh‖0,Ω . h1+ρ‖u‖3,∞,Ω.

Proof: We decompose

∇u−Ghuh = (∇u− (∇u)I) + ((∇u)I −GhuI) + Gh(uI − uh), (4.3)

where (∇u)I ∈ Vh × Vh is the linear interpolation of ∇u. By the standard approximation

theory,

‖∇u− (∇u)I‖0,Ω . h2|u|3,Ω. (4.4)

We observe that when we pick an element patch on T1,h, both conditions (3.1) and (3.2)

are satisfied. Therefore, using Theorem 3.1, we have

‖(∇u)I −GhuI‖0,Ω1,h
≤


 ∑

τ∈Ω1,h

|τ |
∑

z∈Nh∩τ̄

|GhuI(z)−∇u(z)|2



1/2

. h1+α‖u‖3,∞,Ω|Ω1,h|1/2 . h1+α‖u‖3,∞,Ω. (4.5)

On the other hand,

‖(∇u)I −GhuI‖0,Ω2,h
. h‖u‖3,∞,Ω|Ω2,h|1/2 . h1+σ/2‖u‖3,∞,Ω (4.6)

by Condition (α, σ). Combining (4.5) with (4.6), we have

‖(∇u)I −GhuI‖0,Ω . h1+min(α,σ/2)‖u‖3,∞,Ω. (4.7)

Similar as in (4.5), we have, by using the fact proved in Theorem 3.2, that Ghv(z) is a

convex combination of ∇v|τzs,

‖Gh(uI − uh)‖0,Ω1,h
≤


 ∑

τ∈T1,h

|τ |
∑

z∈Nh∩τ̄

|Gh(uI − uh)(z)|2



1/2

.


 ∑

τ∈T1,h

|τ ||∇(uI − uh)|τ |2



1/2

= ‖∇(uI − uh)‖0,Ω1,h

. h1+ρ‖u‖3,∞,Ω, (4.8)
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by Theorem 4.1. In addition,

‖Gh(uI − uh)‖0,Ω2,h
≤


 ∑

τ∈T2,h

|τ |
∑

z∈Nh∩τ̄

|Gh(uI − uh)(z)|2



1/2

. h‖u‖3,∞,Ω


 ∑

τ∈T2,h

|τ |



1/2

. h1+σ/2‖u‖3,∞,Ω. (4.9)

Combining (4.8) and (4.9) yields

‖Gh(uI − uh)‖0,Ω . h1+ρ‖u‖3,∞,Ω. (4.10)

The conclusion follows by applying (4.4), (4.7), and (4.10) to the right hand side of (4.3).

2

Theorem 4.2 requires the global regularity u ∈ W 3∞(Ω) which is too restrictive in prac-

tice. The next theorem turns to interior maximum norm estimates and relaxes the global

regularity assumption on the solution.

Theorem 4.3. Consider an interior patch ωz ⊂⊂ Ωd ⊂ Ω1,h with d = dist(ωz, ∂Ωd) ≥ Kh

for some constant K > 0. Let u ∈ W 2∞(Ω) ∩ W 3∞(Ωd) be the solution of (4.1), let uh be

the solution of (4.2), and let Gh be a recovery operator defined by one of the three: a)

the weighted averaging, b) the local L2-projection, and c) the local discrete least-squares

fitting. Then we have

|(∇u−Ghuh)(z)| . h1+min(1,α)‖u‖3,∞,ωz + d−1h2 ln
1
h
‖u‖2,∞,Ω + h1+α ln

d

h
|u|2,∞,Ωd

.

Proof: We denote V0
h(Ωd) as the finite element subspace that has a compact support on

Ωd and start from

B(uh − uI , χ) = B(u− uI , χ) = F (χ), ∀χ ∈ V0
h(Ωd),

with

F (χ) =
∑

e∈Ed

∫

e
qe

{
(αe − α′e)

∂2u

∂ttt2
+ (βe − β′e)

∂2u

∂ttt∂nnn

}
∂χ

∂ttt
,

where Ed is the edge set of Ωd. By the same argument as in (2.7), we have

|F (χ)| . h1+α|u|2,∞,Ωd

∫

Ωd

|∇χ|.
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Therefore,

‖|F‖|−1,∞,Ωd
= sup

χ∈W 1
1 (Ωd),|χ|

W1
1 (Ωd)

=1

F (χ) . h1+α|u|2,∞,Ωd
. (4.11)

Recall Theorem 1.2 of Schatz-Wahlbin [13] (It is straight forward to verify that all conditions

of that theorem are satisfied under the current situation):

|e|W 1∞(Ω0) + d−1‖e‖L∞(Ω0) ≤ C min
χ∈Sh

(|w − χ|W 1∞(Ωd) + d−1‖w − χ‖L∞(Ωd))

+ Cd−1−s−N/q‖e‖W−s
q (Ωd) + C ln

d

h
‖|F‖|−1,∞,Ωd

,

where e = w − wh satisfies B(e, χ) = F (χ). Now, setting q = ∞, s = 0, w = 0, Ω0 = ωz,

and wh = uI − uh, we obtain

|uh − uI |1,∞,ωz . d−1‖uh − uI‖L∞(Ωd) + ln
d

h
‖|F‖|−1,∞,Ωd

.

Applying (4.11) and ‖uh − uI‖L∞(Ωd) . h2 ln 1
h |u|2,∞,Ω results in

|uh − uI |1,∞,ωz . d−1h2 ln
1
h
‖u‖2,∞,Ω + h1+α ln

d

h
|u|2,∞,Ωd

. (4.12)

Now we decompose

(∇u−Ghuh)(z) = (∇u−GhuI)(z) + Gh(uI − uh)(z).

By Theorem 3.2, Ghv(z) is a convex combination of values of ∇v on τ ∈ ωz. Consequently,

Gh is a bounded operator in the sense

|Ghvh(z)| . |vh|1,∞,ωz , ∀vh ∈ Vh.

Therefore,

|(∇u−Ghuh)(z)| . |(∇u−GhuI)(z)|+ |uI − uh|1,∞,ωz . (4.13)

The conclusion follows by applying Theorem 3.1 and (4.12) to the right hand side of (4.13).

2

Remark. When α < 1, we choose d = h1−α and obtain

|(∇u−Ghuh)(z)| . h1+α ln
1
h

.

When α ≥ 1, we choose d = h1−β with β ∈ (0, 1] and obtain

|(∇u−Ghuh)(z)| . h1+β ln
1
h

.
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We see that when α ≥ 1, the recovery is more accurate as z leaving the boundary.

5. Asymptotic Exactness of the Recovery Type Error Estimators. With prepara-

tion in the previous sections, it is now straightforward to prove the asymptotic exactness of

error estimators based on the recovery operator Gh. The global error estimator is naturally

defined by

ηh = ‖Ghuh −∇uh‖0,Ω. (5.1)

Theorem 5.1. Assume the hypotheses of Theorem 4.2. Furthermore, assume that there

exists a constant c(u) > 0 such that

‖∇(u− uh)‖ ≥ c(u)h. (5.2)

then ∣∣∣∣
ηh

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ . hρ, ρ = min(
1
2
,
σ

2
, α)

Proof: By Theorem 4.2 and hypothesis (5.2), we have
∣∣∣∣

ηh

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ ≤
‖Ghuh −∇u‖0,Ω

‖∇(u− uh)‖0,Ω
. h1+ρ‖u‖3,∞,Ω

c(u)h
. hρ.

2

The point-wise error estimator at a vertex z ∈ τ̄ ⊂ Ω1,h is naturally defined by

ηz
h = |Ghuh(z)−∇uh(τ)|. (5.3)

The next theorem shows that the point-wise error estimator is asymptotically exact.

Theorem 5.2. Assume the hypotheses of Theorem 4.3. Let z be a vertex of element

τ ⊂ Ω1,h and assume that there exists a constant c(u) > 0 such that

|∇u(z)−∇uh(τ)| ≥ c(u)h. (5.4)

Then we have a) when α ∈ (0, 1),
∣∣∣∣

ηz
h

|∇u(z)−∇uh(τ)| − 1
∣∣∣∣ . hα,

with dist(z, ∂Ω1,h) ≥ Kh1−α; and b) when α ≥ 1,
∣∣∣∣

ηz
h

|∇u(z)−∇uh(τ)| − 1
∣∣∣∣ . hβ, ∀β ∈ (0, 1],
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with dist(z, ∂Ω1,h) ≥ Kh1−β.

Proof: We only prove the case when α ∈ (0, 1). By Theorem 4.3 and hypothesis (5.4),

we have ∣∣∣∣
ηz

h

|∇u(z)−∇uh(τ)| − 1
∣∣∣∣ ≤

|Ghuh(z)−∇u(z)|
|∇u(z)−∇uh(τ)| . h1+α

h
= hα.

2

We see that the error estimators (5.1) and (5.3) based on the gradient recovery operator

are asymptotically exact under Condition (α, σ). As we mentioned above, this condition is

not a very restrictive condition in practice. An automatic mesh generator usually produces

some grids which are mildly structured. In practice, a completely unstructured mesh is

seldom seen. Our analysis explains in part the good performance of the ZZ error estimator

based on the local discrete least-squares fitting for general grids.

Acknowledgement. The authors would like to thank Professor Wahlbin for the in-

triguing discussion which leads to the proof of Theorem 4.3.
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[2] I. Babuška and W.C. Rheinboldt, A Posteriori Error Error Estimates for the Finite

Element Method, Internat. J. Numer. Methods Engrg., 12 (1978), pp.1597-1615.
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