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Abstract. In this paper, some patch recovery methods are proposed and an-
alyzed for finite element approximation of elasticity problems using quadri-
lateral meshes. Under a mild mesh condition, superconvergence results are
established for the recovered stress tensors. Consequently, a posteriori error
estimators based on the recovered stress tensors are asymptotically exact.

1. Introduction. In recent years, the adaptive method based on a posteriori error
control has become one of the most popular numerical methods for solving PDEs.
In this paper, we will focus our attention on a posteriori error estimators based
on gradient recovery techniques. The most well-known gradient recovery method is
the ZZ patch recovery method developed by Zienkiewicz-Zhu [23]. Recently, Zhang-
Naga proposed a new recovery technique [17], which is different from the ZZ patch
recovery. The main advantages of the new recovery technique are as follows: It is
polynomial preserving under arbitrary meshes, a property not shared by the ZZ;
it is superconvergent under minor mesh restrictions. In this paper, we will use
the recovery techniques developed by ZZ and Zhang-Naga to construct a posteriori
error estimators for linear elasticity problems.

While residual type estimators have been well researched even for elasticity prob-
lems, (cf. [7],[8]), we have not seen theoretical analysis on recovery type error es-
timates for these problems. Nevertheless, recovery type estimators are widely used
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in engineering application. It is confirmed numerically that these type error esti-
mators are very effective for computation of elasticity problems [21, 23, 24]. In this
paper, we will present some recovered stress tensors and show that the relevant a
posteriori error estimators are asymptotically exact. The theoretical results given
in this paper are numerically supported by ZZ in [21, 23, 24]. On the other hand,
the analysis here generalizes the results in [20] for the second order elliptic problem.
Analysis of other recovery techniques including the ZZ patch recovery for the second
order elliptic equation with triangular meshes can be found in [15].

This paper is organized as follows: Section 2 describes the model problem un-
der consideration. Section 3 introduces the finite element method followed by the
derivation of the superconvergence error estimate in Section 4. Section 5 is devoted
to construct the recovered stress tensors, and derive their corresponding supercon-
vergence errors. Finally, in the last section, we will give the reliable a posteriori
error estimators based on the recovered stress tensors.

2. Elasticity problems. Let Ω ⊂ R2 be a bounded convex polygonal domain with
vertices Si, edges Γij connecting Si and Sj . Here indices on Γij , Si are understood
as integers modulo n. In this paper, we consider quadrilateral bilinear finite element
approximation of pure displacement and pure traction elasticity problems.

For any v = (v1, v2) ∈ V =̂(H1(Ω))2, we set

εij(v) =
1
2
(
∂vi

∂xj
+

∂vj

∂xi
), 1 ≤ i, j ≤ 2,

σij(v) = λ(divv)δij + 2µεij(v), 1 ≤ i, j ≤ 2,

where the constants λ ≥ 0 and µ > 0 are the Lame coefficients, and δij = 0(i 6= j),
δii = 1. Moreover, we set for any v ∈ V , the expressions (|v1|2m + |v2|2m)

1
2 and

(‖v1‖2m + ‖v2‖2m)
1
2 for (m = 0, 1) will still be denoted by |v|m and ‖v‖m, the

expressions ‖ · ‖m and | · |m represent respectively a norm and a seminorm over the
Sobolev space Hm(Ω) (cf. [9] for details).

We define the bilinear form a(·, ·) on V × V by

a(u,v) =
∫

Ω

2∑

i,j=1

σij(u)εij(v)dx

= λ

∫

Ω

divudivvdx + 2µ

∫

Ω

2∑

i,j=1

εij(u)εij(v)dx

:= λ(divu, divv) + 2µ(ε(u), ε(v)),

and the linear form

(f ,v) =
∫

Ω

2∑

i=1

fividx fi ∈ L2(Ω).

For any k ≥ 1, define the Sobolev space

Ĥk(Ω) = {v ∈ Hk(Ω)2 :
∫

Ω

vdx = 0,

∫

Ω

rotvdx = 0},
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where rotv =
∂v2

∂x1
− ∂v1

∂x2
. Then the weak formulation of the pure traction elasticity

problem is to find unknown displacement u ∈ Ĥ1(Ω) such that

a(u,v) = (f ,v) + 〈g,v〉 ∀v ∈ Ĥ1(Ω), (2.1)

where the inner product 〈·, ·〉 defines the boundary integration

〈g,v〉 =
n∑

i=1

∫

Γi

gi · vds.

For the above pure traction problem to be uniquely solvable, the following com-
patibility condition must be satisfied

(f ,v) + 〈g,v〉 = 0 v ∈ RM,

where the space of infinitesimal rigid motions RM is defined as follows:

RM = {v : vT = (a + bx2, c− bx1), a, b, c ∈ R}.
For the pure displacement problem, the boundary value problem can be written

as: { −µ4u + (λ + µ)grad(divu) = f in Ω
u = 0 on ∂Ω.

(2.2)

It has the following weak formulation: Find u ∈ H1
0(Ω) such that

µ(gradu, gradv) + (µ + λ)(divu,divv) = (f ,v) ∀v ∈ H1
0(Ω). (2.3)

By the Poincare inequality, we know that there exists a unique solution to the
above pure displacement problem.

3. Finite element discretization. Let Th be a partition of the domain Ω by
convex quadrilaterals with the mesh size h := maxK∈Th

hK , hK the longest edge of
K. Let K̂ = [−1, 1] × [−1, 1] be the reference square with vertices Ẑi, and let K
be a convex quadrilateral with vertices ZK

i (xK
i , yK

i ), i = 1, 2, 3, 4. It is known that
there exists a unique bilinear mapping FK such that FK(K̂) = K, FK(Ẑi) = ZK

i

given by

x1 =
4∑

i=1

xK
i Ni, x2 =

4∑

i=1

yK
i Ni,

where

N1 =
1
4
(1− ξ)(1− η), N2 =

1
4
(1 + ξ)(1− η),

N3 =
1
4
(1 + ξ)(1 + η), N4 =

1
4
(1− ξ)(1 + η).

By a simple manipulation, we can explicitly express the mapping FK as:

x1 = a0 + a1ξ + a2η + a3ξη, x2 = b0 + b1ξ + b2η + b3ξη,

where by suppressing the index “K”,

a0 = (x1 + x2 + x3 + x4)/4, b0 = (y1 + y2 + y3 + y4)/4;
a1 = (−x1 + x2 + x3 − x4)/4, b1 = (−y1 + y2 + y3 − y4)/4;
a2 = (−x1 − x2 + x3 + x4)/4, b2 = (−y1 − y2 + y3 + y4)/4;
a3 = (x1 − x2 + x3 − x4)/4, b3 = (y1 − y2 + y3 − y4)/4.
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The Jacobi matrix of the mapping FK is

(DFK)(ξ, η) =

[
∂x1
∂ξ

∂x2
∂ξ

∂x1
∂η

∂x2
∂η

]
=

[
a1 + a3η b1 + b3η
a2 + a3ξ b2 + b3ξ

]

The determinant of the Jacobi matrix is

JK = JK(ξ, η) = JK
0 + JK

1 ξ + JK
2 η, (3.1)

where
JK

0 = a1b2 − b1a2, JK
1 = a1b3 − b1a3, JK

2 = b2a3 − a2b3.

The inverse of the Jacobi matrix is[
∂ξ
∂x1

∂η
∂x1

∂ξ
∂x2

∂η
∂x2

]
= (DFK)−1 =

1
JK

[
b2 + b3ξ −b1 − b3η
−a2 − a3ξ a1 + a3η

]
:=

1
JK

X. (3.2)

It can be shown that

JK
0 := JK(0, 0) =

|K|
4

, JK(ξ, η) > 0. (3.3)

For any function v(x1, x2) defined on K, we associate v̂(ξ, η) by

v̂(ξ, η) = v(x1(ξ, η), x2(ξ, η)), or v̂ = v ◦ FK .

It is straightforward to verify that

∂v

∂x1
=

∂v̂

∂ξ

∂ξ

∂x1
+

∂v̂

∂η

∂η

∂x1

=
1

JK
[b2 + b3ξ,−b1 − b3η][

∂v̂

∂ξ
,
∂v̂

∂η
]T

=
1

JK
B · ∇̂v̂,

here B := [b2 + b3ξ,−b1 − b3η]. Similarly,

∂v

∂x2
=

∂v̂

∂ξ

∂ξ

∂x2
+

∂v̂

∂η

∂η

∂x2

=
1

JK
[−a2 − a3ξ, a1 + a3η][

∂v̂

∂ξ
,
∂v̂

∂η
]T

=
1

JK
A · ∇̂v̂,

here A = [−a2 − a3ξ, a1 + a3η].
We denote the midpoints of Z2Z4 and Z1Z3 as O1 and O2, respectively and let

Pi is the midpoint of edge ZiZi+1, i = 1, 2, 3, 4, (Figure 1). We have

P2P4 =
1
2
(x2 + x3 − x4 − x1, y2 + y3 − y4 − y1) = 2(a1, b1),

P3P1 =
1
2
(x3 + x4 − x1 − x2, y3 + y4 − y1 − y2) = 2(a2, b2),

O1O2 =
1
2
(x1 + x3 − x2 − x4, y1 + y3 − y2 − y4) = 2(a3, b3).

Then

|P2P4| = 2(a2
1 + b2

1)
1
2 , |P1P3| = 2(a2

2 + b2
2)

1
2 , |O1O2| = 2(a2

3 + b2
3)

1
2 ,
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Figure 1. Quadrilateral

Moreover,it is easy to prove that

JK
0 = |1

4
P2P4 × P1P3| = 1

4
|P2P4||P1P3|sinαK , (3.4)

JK
1 = |1

4
P2P4 ×O1O2| = 1

4
|P2P4||O1O2|sinβK , (3.5)

JK
2 = |1

4
P1P3 ×O1O2| = 1

4
|P1P3||O1O2|sinγK , (3.6)

where αK is the acute angle between two lines P1P3 and P2P4, βK is the acute
angle between two lines P2P4 and O1O2, and γK is the acute angle between two
lines P1P3 and O1O2.

Definition 3.1. A convex quadrilateral K is said to satisfy the diagonal condi-
tion if

dK = |O1O2| = O(h1+α
K ), α > 0.

Note that K is a parallelogram if and only if dK = 0.

Remark 1. Using dK to characterize asymptotic quality of quadrilaterals in anal-
ysis can be traced back at least 20 years, cf. [14], also see [11] for more discussions
on mesh conditions. Note that all quadrilaterals produced by a bi-section scheme
of mesh subdivisions have the property α = 1.

Definition 3.2. A partition Th is said to satisfy condition α if there exist α > 0
such that 1) any K ∈ Th satisfies the diagonal condition; and 2) any two K1, K2

in Th that share a common edge satisfy a neighboring condition: For j = 1, 2

aK1
j = aK2

j (1 + O(hα
K1

+ hα
K2

)), bK1
j = bK2

j (1 + O(hα
K1

+ hα
K2

)). (3.7)

Remark 2. Let us comment on the geometric meaning of condition α. Observe
that

aK1
j = aK2

j , bK1
j = bK2

j , j = 1, 2

implies

PK1
2 PK1

4 = 2(a1, b1) = PK2
2 PK2

4 , PK1
3 PK1

1 = 2(a2, b2) = PK2
3 PK2

1 .
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Therefore, the neighboring condition characterizes how “similar” the neighbor quadri-
laterals are. Together with the diagonal condition, quadrilaterals under condition
α cannot deviate from parallelograms too much asymptotically. It is well known
from the literature that parallelogram mesh means superconvergence.

Remark 3. We may use another parameter, say β, in Definition 3.2 for the
neighboring condition. Then we need to carry both parameters all the way in later
statements and proofs, and have γ = min(α, β) for the convergence rate. In order
to simplify the matter, we understand from the very beginning that the α is the
smaller power in the diagonal condition and the neighboring condition.

To obtain optimal order error estimate in the H1-norm for the bilinear isopara-
metric interpolation on a convex quadrilateral K, namely, the estimate

‖v − vI‖0 + hK |v − vI |1,K ≤ Ch2
K |u|2,K , ∀v ∈ H1(K), (3.8)

we need the following degeneration condition, which was introduced by Acosta and
Duran [1].

Definition 3.3. A convex quadrilateral K is said to satisfy the regular decom-
position property with constants N ∈ R and 0 < Ψ < π, or shortly RDP (N, Ψ),
if we can divide K into two triangles along one of its diagonal, which will always be
called d1, in such a way that |d1|/|d2| ≤ N and both triangles satisfy the maximum
angle condition with parameter Ψ(i.e., all angles are bounded by Ψ).

By the definition of JK , and the geometric relations of (2.3),(3.1)-(3.3), we can
easily check that

JK
0

JK
= 1 + O(hα

K),
JK

1

JK
= O(hα

K),
JK

2

JK
= O(hα

K), (3.9)

JK

JK
0

= 1 + O(hα
K),

JK
1

JK
0

= O(hα
K),

JK
2

JK
0

= O(hα
K), (3.10)

Define

A0 = [−a2, a1], A1 = [−a3ξ, a3η]
B0 = [b2,−b1], B1 = [b3ξ,−b3η].

We denote
A = A0 + A1, B = B0 + B1. (3.11)

Lemma 3.4. Let a convex quadrilateral K satisfy the diagonal condition. Then

(a) ‖B0X
−1‖2 ≤ 1 + O(hα), ‖B1X

−1‖2 ≤ O(hα),
(b) ‖A0X

−1‖2 ≤ 1 + O(hα), ‖A1X
−1‖2 ≤ O(hα).

Proof. We only prove (a). The proof of (b) is similar. It is straightforward to verify
that

B0X
−1 = [b2,−b1] · 1

JK
(
[

a1 b1

a2 b2

]
+

[
a3η b3η
a3ξ b3ξ

]
)

=
J0

JK
[1, 0] +

1
JK

[b2a3 − b1a3ξ, b2b3η − b1b3ξ],

B1X
−1 = [b3ξ,−b3η] · 1

JK
(
[

a1 b1

a2 b2

]
+

[
a3η b3η
a3ξ b3ξ

]
)

=
1

JK
[a1b3ξ − a2b3η, b3b1ξ − b2b3η].
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Then

‖B0X
−1‖2 ≤ J0

JK
+ C

h2+α

JK
≤ 1 + O(hα), (3.12)

‖B1X
−1‖2 ≤ ‖ 1

JK
[a1b3ξ − a2b3η, b3b1ξ − b2b3η]‖2 ≤ Chα.

Next we define the finite element space Sh on Th as follows:

Sh = {v ∈ H1(Ω) : v̂ = v ◦ FK ∈ Q1(K̂), ∀K ∈ Th}, Vh = Sh × Sh.

Here Q1(K̂) is the bilinear function space on the reference element.

4. Superconvergence analysis. Define
∂̃v

∂x1
and

∂̃v

∂x2
as follows:

∂̃v

∂x1
:=

1
J0

B0 · ∇̂v̂,
∂̃v

∂x2
:=

1
J0

A0 · ∇̂v̂, (4.1)

where B0 = [b2,−b1], A0 = [−a2, a1]. Based on the definition, we can define the
modified divergence and strain tensor by

d̃ivv =
∂̃v1

∂x1
+

∂̃v2

∂x2
,

and

ε̃(v) = [εij(v)] = [
1
2
(
∂̃vi

∂xj
+

∂̃vj

∂xi
)], i, j = 1, 2,

for any v = (v1, v2).

Next, we define some new bilinear forms based on
∂̃v

∂x1
and

∂̃v

∂x2
on element K

as follows:

(ε(w), ε(w))∗K := JK
0

∫

K̂

ε̃(w) : ε̃(v)dξdη,

and

(div(w), div(v))∗K := JK
0

∫

K̂

d̃iv(w)d̃iv(v)dξdη.

Theorem 4.1. Assume that K satisfies the diagonal condition. Then for any
v = (v1, v2),w = (w1, w2) ∈ Vh, there exists a constant C independent of mesh sizes
h such that

(a) |(ε(w), ε(v))K − (ε̃(w), ε̃(v))∗K | ≤ Chα‖w‖1,K‖v‖1,K ,

(b) |(div(w), div(v))K − (d̃iv(w), d̃iv(v))∗K | ≤ Chα‖w‖1,K‖v‖1,K .

Proof. First we prove (a). The definition of ε, and ε̃ gives

(ε(w), ε(v))K − (ε̃(w), ε̃(v))∗K

=
2∑

i,j=1

[(εij(w), εij(v)K − (ε̃ij(w), ε̃ij(v)∗K ].
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We estimate these terms one by one. For the first term, we have

(ε11(w), ε11(v))K − (ε̃11(w), ε̃11(v))∗K

= (
∂w1

∂x1
,
∂v1

∂x1
)K − JK

0

∫

K̂

∂̃w1

∂x1

∂̃v1

∂x1
dξdη

=
∫

K̂

(
1

JK
B∇̂ŵ1)T (

1
JK

B∇̂v̂1)JKdξdη

−JK
0

∫

K̂

(
1

JK
0

B0∇̂ŵ1)T (
1

JK
0

B0∇̂v̂1)dξdη

=
∫

K̂

1
JK

(B∇̂ŵ1)T (B∇̂v̂1)dξdη −
∫

K̂

1
JK

0

(B0∇̂ŵ1)T (B0∇̂v̂1)dξdη

= [
∫

K̂

1
JK

(B∇̂ŵ1)T (B∇̂v̂1)dξdη −
∫

K̂

1
JK

0

(B∇̂ŵ1)T (B∇̂v̂1)dξdη]

+[
∫

K̂

1
JK

0

(B∇̂ŵ1)T (B∇̂v̂1)dξdη −
∫

K̂

1
JK

0

(B0∇̂ŵ1)T (B0∇̂v̂1)dξdη]

:= E1 + E2

For the term E1, we can estimate it as follows:

E1 =
∫

K

∂w1

∂x1

∂v1

∂x1
dx1dx2 −

∫

K

JK

JK
0

∂w1

∂x1

∂v1

∂x1
dx1dx2

=
∫

K

(1− JK

JK
0

)
∂w1

∂x1

∂v1

∂x1
dx1dx2

=
∫

K

(
JK

1

JK
0

ξ +
JK

2

JK
0

η)
∂w1

∂x1

∂v1

∂x1
dx1dx2

≤ Chα|w1|1|v1|1.
In the last inequality, we have used (3.10).

Next, we estimate the term E2. Because B = B0 + B1, we have

E2 =
1

JK
0

[
∫

K̂

(B1∇̂ŵ1)T (B0∇̂v̂1)dξdη +
∫

K̂

(B0∇̂ŵ1)T (B1∇̂v̂1)dξdη

+
∫

K̂

(B1∇̂ŵ1)T (B1∇̂v̂1)dξdη].

We only estimate the first term in the above formulation. The estimation of the
other two terms is similar. Using Lemma 3.4 and (3.7) yields

1
JK

0

|
∫

K̂

(B1∇̂ŵ1)T (B0∇̂v̂1)dξdη|

=
1

JK
0

|
∫

K̂

(∇̂ŵ1)T (BT
1 B0)(∇̂v̂1)dξdη|

= |
∫

K̂

JK

JK
0

(
1

JK
X∇̂ŵ1)T (X−1)T (BT

1 B0)X−1(
1

JK
X∇̂v̂1)dx1dx2|

= |
∫

K̂

JK

JK
0

(
1

JK
X∇̂ŵ1)T (B1X

−1)T )(B0X
−1)(

1
JK

X∇̂v̂1)dx1dx2|

= |
∫

K̂

JK

JK
0

(∇w1)T (B1X
−1)T )(B0X

−1)(∇v1)dx1dx2|

≤ Chα|w1|1,K |v1|1,K .
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Hence, we can obtain

(ε11(w), ε11(v))K − (ε̃11(w), ε̃11(v))∗K ≤ Chα|w1|1,K |v1|1,K . (4.2)

Similarly, we have

(ε22(w), ε22(v))K − (ε̃22(w), ε̃22(v))∗K ≤ Chα|w2|1,K |v2|1,K . (4.3)

For the term,
(ε12(w), ε12(v))K − (ε̃12(w), ε̃12(v))∗K ,

we can derive that

(ε12(w), ε12(v))K − (ε̃12(w), ε̃12(v))∗K

=
1
4

∫

K

(
∂w2

∂x1
+

∂w1

∂v2
)(

∂v2

∂x1
+

∂v1

∂v2
)dx1dx2

−JK
0

1
4

∫

K̂

(
∂̃w2

∂x1
+

∂̃w1

∂v2
)(

∂̃v2

∂x1
+

∂̃v1

∂v2
)dξdη

=
1
4
[
∫

K

∂w2

∂x1

∂v1

∂x2
dx1dx2 − JK

0

∫

K̂

∂̃w2

∂x1

∂̃v1

∂x2
dξη]

+
1
4
[
∫

K

∂w1

∂x2

∂v2

∂x1
dx1dx2 − JK

0

∫

K̂

∂̃w1

∂x2

∂̃v2

∂x1
dξη]

+
1
4
[
∫

K

∂w2

∂x1

∂v1

∂x2
dx1dx2 − JK

0

∫

K̂

∂̃w2

∂x1

∂̃v1

∂x2
dξη]

+
1
4
[
∫

K

∂w2

∂x1

∂v2

∂x1
dx1dx2 − JK

0

∫

K̂

∂̃w2

∂x1

∂̃v2

∂x1
dξη]

:= H1 + H2 + H3 + H4.

Using the same techniques as the estimation for (4.2), we can estimate Hi, (i =
1, ..., 4) one by one, and finally we can get

4∑

i=1

|Hi| ≤ Chα|w|1,K |v|1,K . (4.4)

Then combining above two equalities yields

(ε12(w), ε12(v))K − (ε̃12(w), ε̃12(v))∗K ≤ Chα|w|1,K |v|1,K . (4.5)

Similarly, we have

(ε21(w), ε21(v))K − (ε̃21(w), ε̃21(v))∗K ≤ Chα|w|1,K |v|1,K , (4.6)

which, together with (4.2),(4.3),(4.5), gives (a).
The proof of (b) is similar to the proof of (a).

We then define a modified bilinear form over the finite element space Vh as
follows:

ah(u,v) = 2µ
∑

K

(ε̃(u), ε̃(v))∗K + λ
∑

K

(d̃ivu, d̃ivv)∗K , ∀u, v ∈ Vh.

Theorem 4.2. Assume the partition Th satisfy the diagonal condition and
RDP(N,Ψ), and let uI be the finite element interpolation of the function u =
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(u1, u2) ∈ H3(Ω)∩H1
0(Ω) under quadrilateral meshes. Then for any v = (v1, v2) ∈

Vh = Sh × Sh,

|ah(u− uI,v)| ≤ C(h1+α|u|2,Ω + h2|u|3,Ω)‖v‖1,Ω. (4.7)

Proof. By the definition, we have

ah(u− uI,v) = 2µ
∑

K

(ε̃(u− uI), ε̃(v))∗K + λ
∑

K

(d̃iv(u− uI), d̃ivv)∗K , (4.8)

For the first term in the right hand side of the above equality, we have

(ε̃(u− uI), ε̃(v))∗K =
2∑

i,j=1

(ε̃ij(u− uI), ε̃ij(v))∗K .

By simple calculation, we get

(ε̃11(u− uI), ε̃11(v))∗K

= JK
0

∫

K

∂̃(u1 − uI
1)

∂x1

∂̃v1

∂x1
dx1dx2

=
∫

K̂

∇̂(û1 − ûI
1).(

1
JK

0

BT
0 B0).∇̂v1dξdη

=
b2
2

JK
0

∫

K̂

∂(û1 − ûI
1)

∂ξ

∂v1

∂ξ
dξdη +

b2
1

JK
0

∫

K̂

∂(û1 − ûI
1)

∂η

∂v1

∂η
dξdη

−[
b2b1

JK
0

∫

K̂

∂(û1 − ûI
1)

∂ξ

∂v1

∂η
dξdη +

b2b1

JK
0

∫

K̂

∂(û1 − ûI
1)

∂η

∂v1

∂ξ
dξdη].

We estimate the terms on the right hand side of the above equality one by one. For
the first term, if û1 ∈ P2(K̂), it is easy to see that

∫

K̂

∂(û1 − ûI
1)

∂ξ

∂v1

∂ξ
dξdη = 0.

So by the Bramble-Hilbert Lemma and the fact | b22
JK
0
| = O(1), we have

| b2
2

JK
0

∫

K̂

∂(û1 − ûI
1)

∂ξ

∂v1

∂ξ
dξdη|

≤ C‖D3û1‖0,K̂ |v̂1|1,K̂

≤ C(h1+α
K |u1|2,K + h2

K |u1|3,K)|v1|1,K .

Similarly,

| b2
1

JK
0

∫

K̂

∂(û1 − ûI
1)

∂η

∂v1

∂η
dξdη| ≤ C(h1+α

K |u1|2,K + h2
K |u1|3,K)|v1|1,K .

Next we estimate the last term. For any v1 ∈ Sh, we can express

∂v̂1

∂ξ
=

∂v̂1

∂ξ
(0, 0) + η

∂2v̂1

∂ξ∂η
,

∂v̂1

∂η
=

∂v̂1

∂η
(0, 0) + ξ

∂2v̂1

∂ξ∂η
,
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Then we can write
b2b1

JK
0

[
∫

K̂

∂(û1 − ûI
1)

∂ξ

∂v1

∂η
dξdη +

∫

K̂

∂(û1 − ûI
1)

∂η

∂v1

∂ξ
dξdη]

=
b2b1

JK
0

[
∂v1

∂η
(0, 0)

∫

K̂

∂(û1 − ûI
1)

∂ξ
dξdη +

∂v1

∂ξ
(0, 0)

∫

K̂

∂(û1 − ûI
1)

∂η
dξdη]

+
b2b1

JK
0

[
∂2v1

∂ξ∂η

∫

K̂

ξ
∂(û1 − ûI

1)
∂ξ

dξdη +
∂2v1

∂ξ∂η

∫

K̂

η
∂(û1 − ûI

1)
∂η

dξdη].

Since for any û1 ∈ P2(K̂), it is easy to check that

∂2v1

∂ξ∂η

∫

K̂

∂(û1 − ûI
1)

∂ξ
dξdη = 0,

∂2v1

∂ξ∂η

∫

K̂

∂(û1 − ûI
1)

∂η
dξdη = 0.

Applying Bramble-Hilbert Lemma gives

|b2b1

JK
0

[
∂v1

∂η
(0, 0)

∫

K̂

∂(û1 − ûI
1)

∂ξ
dξdη +

∂v1

∂ξ
(0, 0)

∫

K̂

∂(û1 − ûI
1)

∂η
dξdη]|

≤ C‖D3û1‖0,K̂ |v̂1|1,K̂ ≤ C(h1+α
K |u1|2,K + h2

K |u1|3,K)|v1|1,K .

For the term
∂2v1

∂ξ∂η

∫

K̂

ξ
∂(û1 − ûI

1)
∂ξ

dξdη =
1
2

∂2v1

∂ξ∂η

∫

K̂

∂(ξ2 − 1)
∂ξ

∂(û1 − ûI
1)

∂ξ
dξdη

= −1
2

∂2v1

∂ξ∂η

∫

K̂

(ξ2 − 1)
∂2(û1 − ûI

1)
∂ξ2

dξdη = −1
2

∂2v1

∂ξ∂η

∫

K̂

(ξ2 − 1)
∂2û1

∂ξ2
dξdη

=
1
2

∫ 1

−1

(ξ2 − 1)(
∂2û1

∂ξ2

∂v̂

∂ξ
)(ξ,−1)dξ − 1

2

∫ 1

−1

(ξ2 − 1)(
∂2û1

∂ξ2
)
∂v̂

∂ξ
(ξ, 1)dξ

+
∫

K̂

(ξ2 − 1)
∂3û1

∂ξ2∂η

∂v̂1

∂ξ
dξdη.

Similarly,

∂2v1

∂ξ∂η

∫

K̂

η
∂(û1 − ûI

1)
∂η

dξdη

=
1
2

∫ 1

−1

(η2 − 1)(
∂2û1

∂2η

∂v̂

∂η
)(−1, η)dξ − 1

2

∫ 1

−1

(η2 − 1)(
∂2û1

∂η2
)
∂v̂

∂ξ
(1, η)dξ

+
∫

K̂

(ξ2 − 1)
∂3û1

∂ξ2∂η

∂v̂1

∂ξ
dξdη.

Then combining above two equalities yields

b2b1

J0
[
∂2v1

∂ξ∂η

∫

K̂

ξ
∂(û1 − ûI

1)
∂ξ

dξdη +
∂2v1

∂ξ∂η

∫

K̂

η
∂(û1 − ûI

1)
∂η

dξdη]

=
b2b1

J0
{

4∑

i=1

|li|2
∫

li

(t(s)2 − 1)
∂2u1

∂s2

∂v1

∂s
ds

+[
∫

K̂

(ξ2 − 1)
∂3û1

∂ξ2∂η

∂v̂1

∂ξ
dξdη +

∫

K̂

(ξ2 − 1)
∂3û1

∂ξ2∂η

∂v̂1

∂ξ
dξdη]}

≤ b2b1

J0

4∑

i=1

|li|
∫

li

(t(s)2 − 1)
∂2u1

∂s2

∂v1

∂s
ds

+C(h1+α
K |u1|2,K + h2

K |u1|3,K)|v1|1,K ,



174 ZHONG-CI SHI, XUEJUN XU AND ZHIMIN ZHANG

here li are four edges of K. Using the neighboring condition, for any two elements
K1, K2, that shares a common edge, and the trace theorem, we have

|(bK1
1 bK1

2

JK1
0

− bK2
1 bK2

2

JK2
0

)|l|2
∫

li

(t(s)2 − 1)
∂2u1

∂s2

∂v1

∂s
ds

≤ Chα|l|2(h−1|u1|2,K |v1|1,K + h|u1|3,K |v1|1,K)

≤ C(h1+α
K |u1|2,K + h2

K |u1|3,K)|v1|1,K .

Adding all elements K ∈ T together gives
∑

K

(ε̃11(u− uI), ε̃11(v))∗K

≤ C(h1+α|u1|2 + h2|u1|3)|v1|1. (4.9)

Similarly, we have
∑

K

(ε̃22(u− uI), ε̃22(v))∗K

≤ C(h1+α|u1|2 + h2|u1|3)|v1|1. (4.10)

For the term
∑

K

(ε̃12(u− uI), ε̃12(v))∗K

=
1
4

∑

K

∫

K

(
∂̃(u2 − uI

2)
∂x1

dx1dx2 +
∂̃(u1 − uI

1)
∂x2

)(
∂̃v2

∂x1
+

∂̃v1

∂x2
)dx1dx2

=
1
4

∑

K

[
∫

K

(
∂̃(u2 − uI

2)
∂x1

∂̃v2

∂x1
dx1dx2 +

∂̃(u2 − uI
2)

∂x1

∂̃v1

∂x2
dx1dx2

+
∫

K

(
∂̃(u1 − uI

1)
∂x2

∂̃v2

∂x1
dx1dx2 +

∂̃(u1 − uI
1)

∂x1

∂̃v1

∂x2
dx1dx2]

:= I1 + I2 + I3 + I4.

Using same arguments as in the proof of (4.9), we can estimate Ii one by one, and
finally we can get

∑

K

(ε̃12(u− uI), ε̃12(v))∗K

≤ C(h1+α|u|2 + h2|u|3)|v|1. (4.11)

Similarly, we have
∑

K

(ε̃21(u− uI), ε̃21(v))∗K

≤ C(h1+α|u|2 + h2|u|3)|v|1. (4.12)

Using the same technique, we can prove that
∑

K

(d̃iv(u− uI), d̃ivv)∗K

≤ C(h1+α|u|2 + h2|u|3)|v|1.
Conclusion follows by combining (4.8)-(4.12).
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From the proof of the above theorem, we know that the following result is also
valid.
Proposition 4.1. Assume the partition Th satisfy the diagonal condition and
RDP(N,Ψ), and let uI be the finite element interpolation of the function u ∈ H3(Ω),
under the quadrilateral meshes. Then for any Ω0 ⊂⊂ Ω, v ∈ Vh = Sh×Sh, we have

|ah,Ω0(u− uI,v)| ≤ C(h1+α|u|2,Ω0 + h2|u|3,Ω0)‖v‖1,Ω. (4.13)

Theorem 4.3. Assume that Th satisfies diagonal condition, and RDP (N, Ψ).
Let u ∈ H3(Ω)∩H1

0(Ω) be the solution of (2.1), let uh and uI be the finite element
approximation and the finite element interpolation of u, respectively. Then

(1) |uI − uh|1 ≤ C(h1+α|u|2,Ω + h2|u|3,Ω)

(2) ‖σ(uI)− σ(uh)‖0 ≤ C(h1+α|u|2,Ω + h2|u|3,Ω).

Proof. By Theorem 4.1, and Theorem 4.2, we can derive

a(u− uI,v) ≤ |a(u− uI,v)− ah(u− uI,v)|+ |ah(u− uI,v)|
≤ Chα

∑

K

|u− uI|1,K |v|1 + ah(u− uI,v)

≤ C(h1+α|u|2,Ω + h2|u|3,Ω)|v|1.
Using Korn equality gives

|uI − uh|1 ≤ C|||uI − uh|||

≤ C sup
v∈Vh

a(uI − uh,v)
|||v||| = sup

v∈Vh

a(uI − u,v)
|||v|||

≤ C(h1+α|u|2,Ω + h2|u|3,Ω),

where ||| · ||| = a(·, ·) 1
2 . By the definition of the stress tensor, we have

‖σ(uI)− σ(uh)‖0 ≤ 2µ‖ε(uI)− ε(uh)‖0 + λ‖divuI − divuh‖0
≤ C|uI − uh|1 ≤ C(h1+α|u|2,Ω + h2|u|3,Ω).

We complete the proof.

5. Stress tensor recovery. In this section, we will introduce some patch recovery
methods, which were proposed in [23],[17] for the second order elliptic problems.
First we define a gradient recovery operator Gh : Sh → Sh × Sh, where Sh is
the bilinear element space under quadrilateral meshes, as follows: Given the finite
element function vh, we first define Ghvh at all vertices, and then obtain Ghvh on
the whole domain by interpolation using the original nodal shape functions of Sh.

Given an interior vertex zi, we select an element patch ωi, where

ω̄i = ∪K∈Th,z∈K̄K̄.

We denote all nodes on ω̄i(including zi) as zij , j = 1, 2, ...., n(≥ 6). In the follow-
ing, we will introduce several fitting methods to recover the gradient of a function
vh ∈ Sh at zi by values of zij . To demonstrate the idea, we write the recovery pro-
cedure explicitly on the element patch shown by Fig. 2. For general quadrilateral
meshes, a computer algorithm will be needed. We use local coordinates (x1, x2)
with zi as the origin.
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1) Fitting
px1
1 (x1, x2) = ~pT~a = (1, x1, x2)(a1, a2, a3)T

with respect to the four derivative values at the center of each element on the patch
results in QT Q~a = QT~σ where ~σT = (σ1, · · · , σ4) (here we use σ to represent ∂x1vh

since the case for ∂x2vh is the same) and

QT =




1 1 1 1
−1/2 1/2 1/2 −1/2
−1/2 −1/2 1/2 1/2


 .

It is easy to calculate

QT Q =




4 0 0
0 1 0
0 0 1


 .

Therefore,

px1
1 (x1, x2) =

1
4

4∑

j=1

σj +
1
2
(−σ1 + σ2 + σ3 − σ4)x1 +

1
2
(−σ1 − σ2 + σ3 + σ4)x2.

We then have
px1
1 (0, 0) =

1
8h

[2(v1 − v5) + v2 − v4 + v8 − v6].

Similarly,

px2
1 (0, 0) =

1
8h

[2(v3 − v7) + v2 − v8 + v4 − v6],

where vi, (i = 1, ..., 8) denote the values of the function vh at the vertices of K ∈ ωz

(cf. Figure 2 for details).
Now define

Ghvh(zi) = (G1
hvh(zi), G2

hvh(zi))T = (px1
1 (0, 0), px2

1 (0, 0))T .

2) Fitting

qx1
1 (x1, x2) = ~pT~a = (1, x1, x2, x1x2)(a1, a2, a3, a4)T

with respect to the four gradient values at the center of each element on the patch
is the same as the interpolation. Therefore,

qx1
1 (x1, x2) =

1
4

4∑

j=1

σj +
1
2
(−σ1 + σ2 + σ3 − σ4)x1 +

1
2
(−σ1 − σ2 + σ3 + σ4)x2

+(σ1 − σ2 + σ3 − σ4)x1x2

= p1(x1, x2) + (σ1 − σ2 + σ3 − σ4)x1x2.

Note that qx1
1 (0, 0) = px1

1 (0, 0), the same as in 1). Similarly, we have qx1
2 (0, 0) =

px1
2 (0, 0). Then we define

Ghvh(zi) = (G1
hvh(zi), G2

hvh(zi))T = (qx1
1 (0, 0), qx2

1 (0, 0))T = (px1
1 (0, 0), px2

1 (0, 0))T .

3) Fitting
p2(x1, x2) = (1, x1, x2, x

2
1, x1x2, x

2
2)(a1, · · · , a6)T

with respect to the nine nodal values on the patch. Now

~e = (1, 1, 1, 1, 1, 1, 1, 1, 1)T , ~x = (0, 1, 1, 0,−1,−1,−1, 0, 1)T ,

~y = (0, 0, 1, 1, 1, 0,−1,−1,−1)T , A = (~e, ~x, ~y, ~x2, ~x~y, ~y2),
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(QT Q)−1QT = diag(
1
9
,
1
6
,
1
6
,
1
6
,
1
4
,
1
6
) ·




5 2 −1 2 −1 2 −1 2 −1
0 1 1 0 −1 −1 −1 0 1
0 0 1 1 1 0 −1 −1 −1
−2 1 1 −2 1 1 1 −2 1
0 0 1 0 −1 0 1 0 −1
−2 −2 1 1 1 −2 1 1 1




.

∂p2

∂x1
(0, 0) =

1
6h

(v1 − v5 + v2 − v4 + v8 − v6),

and
∂p2

∂x2
(0, 0) =

1
6h

(v2 − v8 + v3 − v7 + v4 − v6).

Now define
Ghvh(zi) = (G1

hvh(zi), G2
hvh(zi))T = ∇p2(0, 0; zi).

4) Fitting

q2(x1, x2) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

2
1x

2
2)(a1, · · · , a9)T

with respect to the nine nodal values on the patch is the same as interpolation.
This results in

∂q2

∂x1
(0, 0) =

1
2h

(v1 − v5), (5.1)

and
∂q2

∂x2
(0, 0) =

1
2h

(v3 − v7), (5.2)

which is different from all above. Fitting

q̃2(x1, x2) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2)(a1, · · · , a8)T

with respect to the nine nodal values on the patch also produces (5.1),(5.2).
Next define

Ghvh(zi) = (G1
hvh(zi), G2

hvh(zi))T = ∇q2(0, 0; zi).

Remark 4. Fitting strategies 1) & 2) are the well known ZZ patch recovery, and
strategies 3) & 4) were proposed by Zhang and Naga in [17].

Then for any uh = (u1
h, u2

h), we define the Stress Tensor Recovery as follows

σ∗h(uh) = 2µε∗(uh) + λdiv∗(uh), (5.3)

where

ε∗(uh) =
2∑

i,j=1

1
2
(Gj

hui
h + Gi

huj
h),

and
div?(uh) = G1

hu1
h + G2

hu2
h,

where G1
h, G2

h are defined by the above four fitting methods.
When we consider the pure traction problem, we do not need to do stress tensor

recovery on the boundary. However, if we consider the pure displacement boundary
value problem, the recovered strain tensor on a boundary node z can be determined
from an element patch ωi such that z ∈ ωi in the following way: As an example, we
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Figure 2. Element Patch ωz

consider the fitting strategy 3). Let the relative coordinates of z with respect to zi

is (h, h), then

Ghvh(zi) = (G1
hvh(zi), G2

hvh(zi))T = ∇p2(h, h; zi).

Putting the gradient recovery to the (5.3) yields the stress tensor recovery. If zi

is covered by more than one element patches, then some averaging may be applied
(cf. [17] for details).

Theorem 5.1. Let Th satisfy the diagonal condition. Then there exists a con-
stant C independent of h such that

‖σ∗(vh)‖0 ≤ C|vh|1 ∀vh ∈ Vh.

Proof. We first consider an element patch that contains four uniform square ele-
ments (Figure 2).

We discuss only the fitting strategy 3), the proof for the another three strategies
is similar. Following the recovery procedure of the above, it is straightforward to
derive

G1
hv(z) =

1
h

∂

∂ξ
p̂v
2(0, 0) =

1
6h

(v1 − v5 + v2 − v4 + v8 − v6) =
1
h

∑

j

~c1
jvj , (5.4)

where the weighted c1
j are the second row of (QT

0 Q0)−1QT
0 for the x1-derivative and

similarly

G2
hv(z) =

1
h

∂

∂η
p̂v
2(0, 0) =

1
6h

(v2 − v8 + v3 − v7 + v4 − v6) =
1
h

∑

j

~c2
jvj , (5.5)

where the weighted c2
j are the third row of (QT

0 Q0)−1QT
0 for the x2-derivative. By

inverse inequality,

|v1 − v5|2 ≤ 2|v1 − v(z)|2 + 2|v(z)− v5|2
≤ Ch2(|v|21,∞,K2

+ |v|21,∞,K1
)

≤ C(|v|21,K2
+ |v|21,K1

)

= C|v|21,K1∪K2
.

Similarly
|v2 − v4|2 ≤ C|v|21,K3∪K4

, |v8 − v6|2 ≤ C|v|21,K1∪K2
,
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Then we have

G1
hv(z) ≤ Ch−1(|v1 − v5|+ |v2 − v4|+ |v8 − v6|)

≤ Ch−1(|v1 − v5|2 + |v2 − v4|2 + |v8 − v6|2) 1
2

≤ Ch−1|v|1,ωz .

We can also get
G2

hv(z) ≤ Ch−1|v|1,ωz .

By linear mapping, these results are also valid for four uniform parallelogram.
We observe that the diagonal condition together with the neighboring condition

imply that for any given node zi, there are four elements attached to it when h is
sufficiently small. In addition, we can decompose the least square fitting matrix Q
associated with those four quadrilateral elements as follows:

Q = Q0 + hαQ1

where Q0 is the least-square fitting matrix associated with those four parallelograms.
After some simple calculations, we can show that

(QT Q)−1QT = (QT
0 Q0)−1QT

0 + O(hα)I,

where I is identity matrix.
Then

G1
hv(z) =

1
h

∑

j

(~c1
j + O(hα))vj .

Notice that ~c is constant vector, so for sufficiently small h, we always have

|G1
hv(z)| ≤ 1

h

∑

j

(~c1
j )vj ≤ Ch−1|v|1,ωz . (5.6)

Then for any K ∈ Th, define

ω̄K = ∪K′∈Th,K̄′∩K̄K̄ ′.

Let zi, i = 1, 2, 3, 4 be the four vertices of the element K, by scaling argument, it
is straightforward to show that

‖G1
hv‖20,K ≤ Ch2

K

4∑

i=1

[G1
hv(zi)]2.

Combining above two equalities and summing all K ∈ Th together yields

‖G1
hv‖20 =

∑

K

‖G1
hv‖20,K

≤
∑

K

h2
K

4∑

i=1

[G1
hv(zi)]2 ≤ Ch2 · h−2

∑

K

|v|21,ωK
,

which means
‖G1

hv‖0 ≤ C|v|1.
Similarly,

‖G2
hv‖0 ≤ C|v|1.

By the definition of the recovery stress tensor and using the above two equalities,
we see that

‖σ∗(vh)‖0 ≤ C|vh|1, ∀vh ∈ Vh.

We complete the proof.
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Remark 5. Another important feature of the recovery operator by the fitting
strategies 3) & 4) is the polynomial preserving property, which have already been
observed in [17],[19]. More precisely, let K ∈ T , and u be a quadratic polynomial
on ωK . Assume that K and all elements adjacent to K are convex. Then

σ∗(u) = σ(u), (5.7)

where u = (u1, u2). Actually, the fitted polynomial p2 = ui when ui (i = 1, 2) is a
quadratic polynomial [17]. As a consequence, ∇p2 = ∇ui, i = 1, 2.

Theorem 5.2. Let Th satisfy the diagonal condition and RDP (N, Ψ). Let u ∈
H3(Ω) ∩ H1

0(Ω) be the solution of (2.1), and let uh ∈ Sh be the finite element
approximation of u. Then the recovered Stress Tensor is superconvergent in the
sense

‖σ(u)− σ∗(uh)‖0 ≤ C(h1+α|u|2 + h2|u|3),
where C is constant independent of u and h.

Proof. We first consider the fitting strategies 3) & 4). We can decompose the error
into

σ(u)− σ∗(uh) = σ(u)− σ∗(u) + σ∗(uI − uh), (5.8)

here we have used the fact σ∗(u) = σ∗(uI). By the polynomial preserving property
for the fitting strategies 3) & 4), and the Bramble-Hilbert Lemma, we can get

‖σ(u)− σ∗(u)‖0 ≤ Ch2|u|3. (5.9)

For the fitting strategies 1) & 2), we continue to split the term σ(u)− σ∗(u) as

σ(u)− σ∗(u) = σ(u)− [σ(u)]I + [σ(u)]I − σ∗(u),

where [σ(u)]I is the bilinear interpolation.
By the interpolation estimate, we have

‖σ(u)− [σ(u)]I‖0 ≤ Ch2|u|3.
Moreover, using the similar techniques developed by [15], [19], we can prove that

‖[σ(u)]I − σ∗(u)‖0 ≤ Ch2|u|3.
So for the strategies 1) & 2), we also have

‖σ(u)− σ∗(u)‖0 ≤ Ch2|u|3. (5.10)

On the other hand, by Theorems 4.2 and 5.1, we can derive

‖σ∗(uI − uh)‖0 ≤ |uI − uI |1 ≤ C(h1+α|u|2 + h2|u|3), (5.11)

which, combining (5.8)–(5.10), yields Theorem 5.2.

For the pure traction problem, we can consider so-called interior estimation,
which was first investigated by Nitsche and Schatz [12]. Using this technique, the
global regularity u ∈ H3(Ω), which may not hold in general, is not required. In the
following, we will provide a local result based on the interior estimate.

We consider Ω0 ⊂⊂ Ω1 ⊂⊂ Ω where Ω0 and Ω1 are compact polygonal subdo-
mains that can be decomposed into quadrilaterals. Here “compact subdomains”
means that dis(Ω0, ∂Ω1) and dis(Ω1, ∂Ω) are of order O(1). Combining the results
developed in Section 4 and the standard interior estimate technique in [12], we
immediately obtain the following result.
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Theorem 5.3. Let Ω ⊂ R2 be a polygonal domain and Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. Assume
that Th satisfy the diagonal condition and RDP (N, Ψ) on Ω1. Let u ∈ H3(Ω) ∩
H1

0(Ω) be the solution of (2.1), and let uh ∈ Sh be the finite element approximation
of u. Then

‖σ(u)− σ∗(uh)‖0,Ω0 ≤ C(h1+α|u|2,Ω + h2|u|3,Ω0),
where C is constant independent of u and h.

6. A posterior error estimate. Let eh = u−uh, our purpose is to estimate the
error ‖σ(eh)‖0,Ω0 by a computable quantity ηh. We can define the error estimator
by the recovered stress tensor

ηh = ‖σ∗(uh)− σ(uh)‖0,Ω0 .

We assume that
‖σ(eh)‖0,Ω0 ≥ Ch. (6.1)

Theorem 6.1. Assume that the same hypotheses as in Theorem 5.3. Let (6.1) be
satisfied. Then

ηh

‖σ(eh)‖0,Ω0

= 1 + O(hρ), ρ = min(1, α). (6.2)

Proof. By the triangle inequality, we have

ηh − ‖σ(u)− σ∗(uh)‖0,Ω0 ≤ ‖σ(eh)‖0,Ω0 ≤ ηh + ‖σ(u)− σ∗(uh)‖0,Ω0 .

Divided the above inequality by ‖σ(eh)‖0,Ω0 yields (6.2).

Remark 6. In this paper, we just consider the compressible elasticity. For the
incompressible elasticity, i.e., Poisson ratio ν → 1

2 , or equivalently λ → ∞, we can
use the so-called enhanced strain finite element method [13] to cope with it. The
advantage of this method is that it provides a stable locking-free element without
the need of implementing the filter. Another important feature of this method is
that we only need to solve a symmetric and definite algebraic system. The saddle
point algebraic system will be avoided. Along this line, some previous results on
non-conforming finite element methods for elasticity [6, 10, 18] would be useful.

Remark 7. Generalization of our results to higher order quadrilateral elements is
feasible. Mesh conditions would be more important since for non-tensor product
space, degeneration of approximation order may happen [3].
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