Throughout this assignment, X is a Hilbert space over \mathbb{C}.

1. (a) Let $x_n, y_n, n = 1, 2, \ldots$ be elements of the closed unit ball of X. If $\lim_{n \to \infty} \langle x_n, y_n \rangle = 1$, prove that $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

(b) If $x_n \in X$, $n = 1, 2, \ldots$, $x_n \to x$ weakly, and $\|x_n\| \to \|x\|$ as $n \to \infty$, prove that $x_n \to x$ in norm.

2. Let X be separable with c.o.n.s. $\{e_1, e_2, \ldots\}$. For $\varepsilon_n > 0$, $n = 1, 2, \ldots$, let

$$K = \{x \in X : |\langle x, e_n \rangle| \leq \varepsilon_n, n = 1, 2, \ldots\}$$

Prove that K is compact in X if and only if $\sum_{n=1}^{\infty} \varepsilon_n < \infty$. (Sets of this type are called Hilbert cubes.)

3. Let $T \in \mathcal{B}(X)$.

(a) Prove: The operator T is normal if and only if $\|T^*x\| = \|Tx\|, x \in X$.

(b) Let $T = W|T|$ be the polar decomposition of T. Prove:

(i) If T is normal then $T = |T|W$.

(ii) If $T = |T|W$ and T is invertible, then T is normal.

(c) Suppose T is self-adjoint. Prove that the series

$$\exp(iT) = I + iT + \frac{(iT)^2}{2!} + \frac{(iT)^3}{3!} + \cdots$$

converges in $\mathcal{B}(X)$ to a unitary operator.

4. Let S and T be normal operators on X.

(a) If A is an invertible operator on X and T commutes with A^*A, then ATA^{-1} is normal.

(b) If S and T^* commute, prove that $S + T$ and ST are normal.

(c) Find positive operators S and T such that ST is not normal. (Hint: Of course, S and T cannot commute. You can find such operators on \mathbb{C}^2.)
5. (a) If \(T \in \mathcal{B}(X) \) with \(\|T\| < 1 \), then \(I - T \) is invertible in \(\mathcal{B}(X) \). \(\text{(Hint: Show that the series } I + T + T^2 + \cdots \text{ converges in norm to } (I - T)^{-1}. \) \)

(b) The set of invertible elements in \(\mathcal{B}(X) \) is an open group. \(\text{(Hint: If } T \text{ is invertible, then for any } S \in \mathcal{B}(X), \)
\[
\|I - T^{-1}S\| = \|T^{-1}(T - S)\| \leq \|T^{-1}\| \|T - S\|. \]

6. For \(T \in \mathcal{B}(X) \), the spectrum of \(T \) is the set
\[
\sigma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible in } \mathcal{B}(X) \}
\]
(Recall that when \(\dim X < \infty \) then \(\sigma(T) \) is the set of eigenvalues of \(T \).) It can be shown that \(\sigma(T) \neq \emptyset \) for all \(T \). Prove each of the following assertions for an operator \(T \) on \(X \).

(a) \(\sigma(T^*) = \{ \overline{\lambda} : \lambda \in \sigma(T) \} \). If \(T \) is self adjoint, then \(\sigma(T) \subset \mathbb{R} \).

(b) If \(T \) is invertible then
\[
\sigma(T^{-1}) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma(T) \right\}.
\]

(c) If \(\lambda \in \sigma(T) \), then \(|\lambda| \leq \|T\| \); hence \(\sigma(T) \) is a nonempty compact subset of \(\mathbb{C} \). \(\text{(Hint: If } |\lambda| > \|T\|, \text{ then } \|\lambda^{-1}T\| < 1. \) \)

(d) If \(U \) is a unitary operator, then \(\sigma(U) \subset \mathbb{T} = \{ z : |z| = 1 \} \).