First, some definitions I haven’t actually mentioned yet, but which I think you’ve probably already gleaned:

Definition 0.1. Let A be a ring. By the center of A we mean the set of elements $a \in A$ such that $ab = ba$ for all $b \in B$.

Definition 0.2. Let R be a commutative ring. By an R-algebra we mean a ring A equipped with a ring homomorphism $\rho : R \rightarrow A$ whose image is contained in the center of A. We often write $r \cdot a$ for $\rho(r)a$, thinking of ρ as providing A with a “scalar” action of R.

By a morphism of R-algebras $A \rightarrow B$ we mean a ring homomorphism $f : A \rightarrow B$ such that $f(r \cdot a) = r \cdot f(a)$ for all $r \in R$.

By a commutative R-algebra we mean an R-algebra whose underlying ring is commutative.

Proposition 0.3. Let R be a commutative ring. Then a commutative R-algebra is the same thing as a commutative ring S together with a ring map $R \rightarrow S$.

Proof. The center of a commutative ring is the ring itself. \hfill \Box

1. **Algebraic closures.**

Here is a definition you have seen before:

Definition 1.1. Let k be a field. We say that k is algebraically closed if every nonconstant polynomial $f(x) \in k[x]$ has a root in k.

This has several (easy) equivalent formulations:

Proposition 1.2. Let k be a field. The following conditions on k are equivalent:

- k is algebraically closed.
- Each nonconstant polynomial $f(x) \in k[x]$ factors as a product $f(x) = \alpha(x - r_1) \cdots (x - r_n)$ for some nonnegative integer n and some $\alpha, r_1, \ldots, r_n \in k$.
- The irreducible elements in $k[x]$ are exactly the elements of the form $\alpha x + r$ for some $\alpha, r \in k$.

Proof. If every nonconstant polynomial $f(x) \in k[x]$ factors completely into linear factors, then clearly every nonconstant polynomial in $f(x)$ has a root in k (just choose r_i from any of the linear factors $x - r_i$). Conversely, if every nonconstant polynomial $f(x) \in k[x]$ has a root $r \in k$, then $x - r$ divides $k[x]$, and the long division algorithm in $k[x]$ (which we can carry out, since $k[x]$ is a principal ideal domain!) then tells us how to write $f(x)$ as $(x - r)f_1(x)$ for some $f_1(x) \in k[x]$. Now either $f_1(x)$ is a constant polynomial, or it has a root itself, and we repeat the process; by downward induction on the degree of $f(x)$, we factor $f(x)$ as the product of linear factors $x - r_i \in k[x]$ and a constant $\alpha \in k$. \hfill \Box

Date: February 2016.
Definition 1.3. Let k be a field. By an algebraic closure of k we mean any algebraic field extension K/k such that K is algebraically closed.

Theorem 1.4. (Existence of algebraic closures.) Every field has an algebraic closure.

Proof. Let k be a field. Form the polynomial ring

$$k \left[X_f : f \in k[x], \text{deg } f > 0 \right],$$

a polynomial ring over k with one generator X_f for each nonconstant polynomial $f \in k[x]$. Let $I \subseteq k \left[X_f : f \in k[x], \text{deg } f > 0 \right]$ be the ideal generated by all the polynomials of the form $f(X_f)$. I claim that $1 \notin I$. Here is a proof by contradiction: suppose that $1 \in I$. Then, by the definition of I, there exists a set of elements $f_1, \ldots, f_n \in k[X_f : f \in k[x], \text{deg } f > 0]$ such that

$$g_1 \cdot f_1(X_{f_1}) + \cdots + g_n \cdot f_n(X_{f_n}) = 1.$$

Choose a root r_i of f_i for each i, and let $h : k \left[X_f : f \in k[x], \text{deg } f > 0 \right] \to k$ be the k-algebra homomorphism sending X_{f_i} to r_i and sending all the other X_f generators to zero. Then

$$h(g_1 \cdot f_1(X_{f_1}) + \cdots + g_n \cdot f_n(X_{f_n})) = 0 = h(1) = 1,$$

a contradiction.

So $1 \notin I$, so there exists (by Zorn’s Lemma) some maximal ideal m of $k \left[X_f : f \in k[x], \text{deg } f > 0 \right]$ containing I. Write E_1 for the quotient ring $k \left[X_f : f \in k[x], \text{deg } f > 0 \right]/m$. Then E_1 is a field since m is a maximal ideal, and we have a ring map $k \to E_1$ by construction, and by construction, every nonconstant polynomial in $k[x]$ has a root in E_1. We don’t know that every nonconstant polynomial over E_1 has a root in E_1, however, only that every nonconstant polynomial in k has a root in E_1. So iterate this construction, with E_1 in place of k, to get a tower of field extensions

$$k = E_0 \subseteq E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots$$

such that every nonconstant polynomial in $E_n[x]$ has a root in E_{n+1}. It is an easy exercise (we have done it in class already) that the union of a tower of field extensions is itself a field, so $E = \cup_{n} E_n$ is a field extension of k, and each given element of E is contained in some E_n and hence has a root in $E_{n+1} \subseteq E$. So E is an algebraically closed field extension of k.

We still need to know that k has an algebraically closed algebraic field extension, but this part is easier: let $E' \subseteq E$ be the union of all the subfields F of E containing k such that the extension F/k is algebraic. In other words, E' is the collection of all the elements of E which are algebraic over k. I claim that E' is a field. The argument is as follows: if $\alpha, \beta \in E$ are algebraic elements, $k(\alpha)$ is a finite extension of k, and $k(\alpha, \beta) = k(\alpha)[x]/(\text{Irr}(\beta, k(\alpha), x))$ is a finite extension of $k(x)$ (since it has degree dividing the degree of $\text{Irr}(\beta, k, x)$). So $k(\alpha, \beta)$ is a finite extension of k, hence $k(\alpha, \beta)$ is an algebraic extension of k, hence every element in $k(\alpha, \beta)$ is the root of some polynomial in $k[x]$. In particular, $\alpha + \beta$ and $\alpha \beta$ and $-\alpha$ and $1/\alpha$ are all roots of polynomials in $k[x]$. So the set of elements of E which are algebraic over k is closed under addition, multiplication, subtraction, and division; so E' is a subfield of E.

Now every element of E' is, by construction, algebraic over k. So E' is an algebraic field extension of k. If $f(x) \in E'[x]$, then $f(x)$ has a root $r \in E$, and that root is clearly algebraic over E'; each of the coefficients of $f(x)$ lives in some algebraic extension of k, and there
are only finitely many nonzero coefficients of \(f(x) \), so \(f(x) \in F(x) \) for some algebraic field extension \(F/k \), with \(F \subseteq E \). So \(r \) is algebraic over \(F \), and \(F \) is an algebraic extension of \(k \). So \(r \) is algebraic over \(k \), so \(r \in E' \). So every polynomial \(f(x) \in E'[x] \) has a root in \(E' \).

Hence \(E' \) is an algebraic closure of \(k \). \(\square \)

Another important property of algebraic closures: if \(k \) is a field with algebraic closure \(E' \), and \(K \) is an algebraic extension of \(k \), then there is a ring homomorphism from \(K \) to \(E' \) which sends \(k \subseteq K \) to \(k \subseteq E' \) by the identity map. In the case where \(K \) is another algebraic closure of \(k \), this implies that any two algebraic closures of a field are isomorphic.

Consequently we can speak of the algebraic closure of a field \(k \), and this is well-defined up to isomorphism. People often write \(\overline{k} \) for the algebraic closure of a field \(k \).

The fact that algebraic closures exist and have this uniqueness-up-to-isomorphism property is very useful. For example, suppose \(k \) is a field, and we want to speak of \(k(\sqrt{2}) \), without already knowing of some field extension of \(k \) that has a square root of \(2 \). This is fine, since we know that (unless \(k \) has a square root of \(2 \) already) the irreducible polynomial of \(\sqrt{2} \) needs to be \(x^2 - 2 \), so we can just form \(k[x]/(x^2 - 2) \), and this is clearly a minimal field extension of \(k \) containing a square root of \(2 \). But we might find ourselves in situations where this kind of reasoning becomes more and more awkward: for example, suppose we need to study how certain invariants of the field \(k(\zeta_{p^n}) \) change as \(n \) increases. (This idea—studying how fundamental invariants of number fields change in infinite towers of extensions—is basically the idea behind Iwasawa theory, a part of algebraic number theory.) We can iteratively construct \(k(\zeta_{p^{n+1}}) \) as an extension of \(k(\zeta_{p^n}) \), but it is much more convenient to simply have a big (but still algebraic) extension of \(k \) in which all possible roots of unity exist, and then all the extensions \(k(\zeta_{p^n}) \) naturally sit inside this big extension. This is what the algebraic closure \(\overline{k} \) is for!