Adaptive Stochastic Systems
Estimation, Filtering, and Noise Attenuation

Araz Hashemi

Wayne State University
Detroit, MI

March 19, 2014
OUTLINE

Sign-Regressor Algorithms
 Motivation and Adaptive Filtering
 Formulation
 Limit Convergence
 Asymptotic Distribution

Sign-Error Algorithms
 Formulation
 Limit Convergence
 Limit Distributions
 Simulated Performance Results

Noise Attenuation
 Formulation
 Robust Noise Attenuation with Unmodeled Dynamics
 Impact of Signal Estimation Errors
 Examples
LINEAR MODELS

\[y_n = \varphi_n^T \alpha + e_n \]

- \(\varphi_n \in \mathbb{R}^r = \) input vector (at ‘time’ \(n \)).
- \(\alpha \in \mathbb{R}^r = \) system parameter
- \(e_n \in \mathbb{R} = \) stochastic system noise (random error at \(n \))
- \(y_n \in \mathbb{R} = \) output observation (at \(n \))

Estimation problem: Use (known) inputs \(\varphi_n \) with observed outputs \(y_n \) to estimate \(\alpha \).
Adaptive Filtering

- Suppose \(\{\varphi_n\}, \{e_n\} \) are stationary sequences with
 - \(\mathbb{E}[\varphi_n\varphi_n'] = R \) ("covariance matrix")
 - \(\mathbb{E}[\varphi_ny_n] = \mathbb{E}[\varphi_n(\varphi_n'\alpha + e_n)] = q \)

- Let \(\theta \) represent our current estimate for \(\alpha \)

- Write \(J(\theta) = \mathbb{E} |y_n - \varphi_n'\theta|^2 \).

- \(\alpha \) minimizes \(J(\cdot) \), with \(J(\alpha) = 0 \) (\(\alpha = R^{-1}q \))

- Hence we want to construct a SA algorithm for \(\theta_n \) such that \(\theta_n \to \alpha \)
Least Mean-Squares Algorithm

Algorithm 1 (LMS)

A Least Mean Squares (LMS) Algorithm is of the form:

\[
\theta_{n+1} = \theta_n + \mu_n \varphi_n [y_n - \varphi_n' \theta_n] \\
= \theta_n + \mu_n \varphi_n [\varphi_n' \alpha + e_n - \varphi_n' \theta_n] \\
= \theta_n - \mu_n \varphi_n \varphi_n' [\theta_n - \alpha] + \varphi_n e_n
\]

where \(\mu_n \) is a sequence of step-sizes (gain-sizes).

It is adaptive in the sense that it adjusts estimates based on the residual error \(y_n - \varphi_n' \theta_n \).
TIME-VARYING PARAMETER

- What if α is time-varying? E.g. $\alpha = \alpha_n$ so that

 $$y_n = \varphi'_n \alpha_n + e_n$$

- Take a constant gain size $\mu_n \equiv \mu$

- Since the adaptive filtering algorithm adjusts by

 $$\theta_{n+1} = \theta_n - \mu \varphi_n \varphi'_n [\theta_n - \alpha_n] + \varphi_n e_n$$

 it should be able to track the parameter α_n as it changes
Markovian Parameter

- If α_n evolves by small increments (e.g. $\alpha_{n+1} = \alpha_n + \tilde{e}_n$ where $\mathbb{E}\tilde{e}_n = 0$) then asymptotic convergence is known.

- What if α_n can “jump” by arbitrarily large increments?

- Suppose α_n is a Markov chain with state space $\mathcal{M} = \{a_1, a_2, \ldots, a_{m_0}\}$ and transition matrix

\[
P^\varepsilon = I + \varepsilon Q
\]
Multiple Access Networks

TDMA Callers Use Time Slices of a Frequency

CDMA Users are Separated by Codes
SIGN-ALGORITHMS

- Often want to speed computations when filtering, especially in communication networks
 - High dimensional data
 - Frequent data shuffling
 - Limited resources
- One way to speed computations is to reduce data complexity during estimation
- By minimizing $J(\theta) = \mathbb{E}|y_n - \varphi'_n \theta|^2$ we obtained:

 \[
 \text{LMS: } \quad \theta_{n+1} = \theta_n + \mu \varphi_n (y_n - \varphi'_n \theta_n)
 \]

- By minimizing $J(\theta) = \mathbb{E}|y_n - \varphi'_n \theta|$ one obtains the Sign-Error algorithm

 \[
 \text{SE: } \quad \theta_{n+1} = \theta_n + \mu \varphi_n \text{sgn}(y_n - \varphi'_n \theta_n)
 \]
Sign-Error to Sign-Regressor

- By just using the sign of the residuals $y_n - \varphi_n' \theta_n$, computations are reduced to simple bit shifts with substantial speed improvement.

- However, the non-linear (non-continuous) $\text{sgn}(\cdot)$ operator makes analysis difficult.

- Also, by ‘throwing away’ much of the information in the residuals, the SE algorithm tends to converge more slowly than the LMS.

- Instead, take $\text{sgn}(\cdot)$ on the regression vector φ_n.
Algorithm 2 (SR)

A Sign-Regressor (SR) algorithm is of the form:

$$\theta_{n+1} = \theta_n + \mu \text{Sgn}(\varphi_n)(y_n - \varphi'_n \theta_n)$$

- ‘Compromise’ of SE and LMS
- Uses full error information from residuals $y_n - \varphi'_n \theta_n$
- ‘Clips’ direction information from regressor φ_n
- Still shows improved computation speed from LMS
- Linear form helps facilitate analysis
\[y_n = \varphi' n \alpha_n + e_n \] \hspace{1cm} (1)

A 1.1 (Markov Chain Assumptions)

- \(\alpha_n \) is a discrete-time homogeneous Markov chain, state space \(\mathcal{M} = \{a_1, a_2, \ldots, a_{m_0}\}, a_i \in \mathbb{R}^r \).
- There exists a small \(\varepsilon > 0 \) such that the transition probability matrix of \(\alpha_n \) is given by
 \[P^{\varepsilon} = I + \varepsilon Q \]
 where \(Q \) is an irreducible generator of a continuous-time Markov chain.
- The initial distribution
 \[\pi_0 = [\mathbb{P}\{\alpha_0 = a_1\}, \mathbb{P}\{\alpha_0 = a_2\}, \ldots, \mathbb{P}\{\alpha_0 = a_{m_0}\}] \] is independent of \(\varepsilon \).
A 1.2 (Mixing-type signals)

- The sequences \(\{\varphi_n\}, \{e_n\} \) are independent of the parameter process \(\{\alpha_n\} \).
- The sequence of signals \(\{ (\varphi_n, e_n) \} \) is bounded.
- There exists a stable matrix \(H \in \mathbb{R}^{r \times r} \) and a constant \(K > 0 \) such that for all \(n \)

\[
\left| \sum_{j=n}^{\infty} E_n \left[\text{Sgn}(\varphi_j)\varphi_j' - H \right] \right| \leq K \\
\left| \sum_{j=n}^{\infty} E_n \left[\text{Sgn}(\varphi_j)e_j \right] \right| \leq K
\]

where \(E_n \) is conditional expectation w.r.t. \(\{\varphi_j, e_j, \alpha_j : j < n; \alpha_n\} \)
A 1.3 (Ergodic properties)

For the matrix H as in A1.1 and for each $m \in \mathbb{N}$, as $n \rightarrow \infty$

\[
\frac{1}{n} \sum_{k=m}^{m+n} \text{Sgn} \varphi_k \varphi'_k \overset{p}{\rightarrow} H
\]

\[
\frac{1}{n} \sum_{k=m}^{m+n} \text{Sgn}(\varphi_k)e_k \overset{p}{\rightarrow} 0
\]

- Unbounded signals (φ_n, e_n) can also be treated (use martingale difference signals or expanding truncation device). Assumed only for notational simplicity.

- Stationary, mixing signals ensure A1.2, A1.3
Mean-Square Error Bounds

Theorem 1.1

Let θ_n be given by the SR algorithm. Under assumptions A1.1 and A1.2, there exists $N_{\mu,\varepsilon} > 0$ such that for all $n > N_{\mu,\varepsilon}$ we have

$$E|\tilde{\theta}_n|^2 = E|\theta_n - \alpha_n|^2 = O(\mu + \varepsilon + \varepsilon^2/\mu).$$

- ε = “transition rate” of parameter α_n
- μ = “adaptation rate” of estimate θ_n
Infinitesimal Limit Behavior

- Optimally, take $\mu = \frac{\varepsilon}{\sqrt{1+\varepsilon}}$ to minimize expected error bound.

- In practice, one chooses μ without knowledge of ε.

- Since smaller ε, μ give smaller expected error, one wonders what happens at the infinitesimal level as $\varepsilon, \mu \to 0$.

- Suppose ε is a function of μ, and then examine limit behavior as $\mu \to 0$.

- Depending on the relationship of ε to μ, we see very different behavior in the limit system.
Limit Analysis breaks down into 3 cases:

1. \(\varepsilon = O(\mu) \) “On-Line”
 - e.g. \(\varepsilon = \mu \)
 - \(\alpha_n \) can jump about as quickly as \(\theta_n \) can track it
 - Limit dynamics have occasional jumps in \(\alpha_n \), but \(\theta_n \) is still able to track it closely

2. \(\varepsilon \ll \mu \) “Slower Markov Chain”
 - e.g. \(\varepsilon = \mu^2 \)
 - \(\alpha_n \) jumps so infrequently it may as well be constant
 - Limit behavior determined by initial distribution
 \[
 \pi_0 = [\mathbb{P}\{\alpha_0 = a_1\}, \mathbb{P}\{\alpha_0 = a_2\}, \ldots, \mathbb{P}\{\alpha_0 = a_{m_0}\}\]
 \]

3. \(\varepsilon \gg \mu \) “Fast Markov Chain”
 - e.g. \(\varepsilon = \sqrt{\mu} \)
 - \(\alpha_n \) jumps too quickly for \(\theta_n \) to track it
 - Frequent jumping of \(\alpha_n \) means that it quickly comes to the stationary distribution \(\nu = [\nu_1, \ldots, \nu_{m_0}] \)
To examine the limit behavior, interpolate the discrete \(\theta_n, \alpha_n \) to continuous-time processes:

\[
\theta^\mu(t) \overset{\Delta}{=} \theta_n, \quad \alpha^\mu(t) \overset{\Delta}{=} \alpha_n, \quad \text{for } t \in [n\mu, n\mu + \mu)
\]

Then consider the limit of the random processes

\[
\theta^\mu(t) \xrightarrow{w} \theta(t)
\]
\[
\alpha^\mu(t) \xrightarrow{w} \alpha(t) \quad \text{as } \mu \to 0
\]

\[\xrightarrow{w}\] denotes “weak convergence”

i.e. \(X_n \xrightarrow{w} X \) if for any bounded, continuous function \(f \),

\[
E f(X_n) \to E f(X)
\]

\(\alpha_n \) is interpolated with step-size \(\mu \) when it actually changes at rate \(\varepsilon \). So we see different limits for \(\alpha(t) \) depending on the relationship of \(\varepsilon \) to \(\mu \).
ON-LINE LIMIT

Theorem 1.2

Let \(\varepsilon = O(\mu) \), and take \(\theta_n \) by the SR algorithm with assumptions A1.1, A1.2, and A1.3. Then as \(\mu \to 0 \)

\[
(\theta^\mu(t), \alpha^\mu(t)) \xrightarrow{w} (\theta(t), \alpha(t))
\]

such that \(\alpha(t) \) is a continuous-time Markov chain generated by \(Q \)
and \(\theta(t) \) satisfies the Markov-switching ODE

\[
\frac{d}{dt} \theta(t) = H(\alpha(t) - \theta(t)), \quad \theta(0) = \theta_0
\]
SLOWER M.C. LIMIT

When $\varepsilon \ll \mu$, the limit goes to the average against the initial distribution $\alpha_* = \sum_{i=1}^{m_0} a_i \pi_{0,i}$.

Theorem 1.3

Let $\varepsilon = \mu^{1+\eta}$ for some $\eta > 0$. Then as $\mu \to 0$, $\theta^\mu(t) \xrightarrow{w} \theta(t)$ such that $\theta(t)$ is the solution to the ODE

$$\frac{d}{dt} \theta(t) = H(\alpha_* - \theta(t)), \quad \theta(0) = \theta_0$$

Corollary 1.4

For any increasing sequence of time shifts $t_\mu \to \infty$ as $\mu \to 0$, $\theta^\mu(\cdot + t_\mu) \xrightarrow{w} \alpha_*$ as $\mu \to 0$.

Fast M.C. Limit

When $\varepsilon \gg \mu$, the limit goes to the average against the stationary distribution $\bar{\alpha} = \sum_{i=1}^{m_0} a_i \nu_i$.

Theorem 1.5

Let $\varepsilon = \mu^\gamma$ for some $1/2 < \gamma < 1$, Then as $\mu \to 0$, $\theta^\mu(t) \xrightarrow{w} \theta(t)$ such that $\theta(t)$ is the solution to the ODE

$$
\frac{d}{dt} \theta(t) = H(\bar{\alpha} - \theta(t)), \quad \theta(0) = \theta_0
$$

Corollary 1.6

For any increasing sequence of time shifts $t_\mu \to \infty$ as $\mu \to 0$, $\theta^\mu(\cdot + t_\mu) \xrightarrow{w} \bar{\alpha}$ as $\mu \to 0$.
Since \((\theta^\mu, \alpha^\mu) \xrightarrow{w} (\theta, \alpha)\), we wish to establish the rate of convergence.

- Given by appropriate scaling factor \(\gamma\) such that \(\frac{\theta^\mu - \alpha^\mu}{\mu^\gamma}\) converges to a non-zero limit.
- From \(\mathbb{E}|\theta_n - \alpha_n|^2 = O(\mu)\) (when \(\varepsilon = \mu\)), one expects \(\gamma = 1/2\) is the rate.

A 1.4 (Mixing Signals CLT)

The scaled signals

\[
\sqrt{\mu} \sum_{j=0}^{t/\mu-1} \text{Sgn}(\varphi_j)e_j \xrightarrow{w} \tilde{w},
\]

where \(\tilde{w}(t)\) is a Brownian motion with covariance \(\tilde{\Sigma}t\) with \(\tilde{\Sigma} \in \mathbb{R}^{r \times r}\) positive definite.
ON-LINE LIMIT DISTRIBUTION

- With $\varepsilon = O(\mu)$, take $N_{\mu,\varepsilon} = N_{\mu}$ such that
 $\mathbb{E}|\theta_n - \alpha_n|^2 = O(\mu)$ for $n > N_{\mu}$. Then define the scaled error

 $u_n \triangleq \theta_n - \alpha_n \sqrt{\mu},$

 $u^\mu(t) \triangleq u_n$ for $t \in [(n - N_{\mu})\mu, (n - N_{\mu})\mu + \mu)$

Theorem 1.7

Let $\varepsilon = O(\mu)$ and assume A1.1 – A1.4. Then $u^\mu(\cdot) \xrightarrow{w} u(\cdot)$ such that $u(\cdot)$ is a solution to the stochastic differential equation

$$du = Hudt + \tilde{\Sigma}^{1/2}dw$$

where $w(\cdot) \in \mathbb{R}^r$ is a standard Brownian motion.
SLOOWER M.C. LIMIT DISTRIBUTION

- With $\varepsilon \ll \mu$, take error from α_*. Define

$$v_n \triangleq \frac{\theta_n - \alpha_*}{\sqrt{\mu}},$$

$$v^\mu(t) \triangleq v_n \quad \text{for } t \in [(n - N_\mu)\mu, (n - N_\mu)\mu + \mu)$$

Theorem 1.8

Let $\varepsilon = \mu^{1+\eta}$ for $0 < \eta \leq 1$ and assume A1.1 – A1.4. Then $v^\mu(\cdot) \xrightarrow{w} v(\cdot)$ such that $v(\cdot)$ is a solution to the stochastic differential equation

$$dv = Hvdt + \tilde{\Sigma}^{1/2}dw$$

where $w(\cdot) \in \mathbb{R}^r$ is a standard Brownian motion.
Fast M.C. Limit Distribution

- With \(\varepsilon \gg \mu \), take error from \(\bar{\alpha} \). Define

\[
 z_n \triangleq \frac{\theta_n - \bar{\alpha}}{\sqrt{\mu}},
\]

\[
 z^\mu(t) \triangleq z_n \quad \text{for } t \in [(n - N_\mu)\mu, (n - N_\mu)\mu + \mu)
\]

Theorem 1.9

Let \(\varepsilon = \mu^\gamma \) for \(1/2 \leq \gamma < 1 \) and assume A1.1 – A1.4. Then

\[
 z^\mu(\cdot) \xrightarrow{w} z(\cdot) \quad \text{such that } z(\cdot) \text{ is a solution to the stochastic differential equation}
\]

\[
 dz = Hzdt + \tilde{\Sigma}^{1/2}dw
\]

where \(w(\cdot) \in \mathbb{R}^r \) is a standard Brownian motion.
INTERPRETATION OF LIMIT DISTRIBUTION

- Theorems 1.7, 1.8, and 1.9 characterize errors $\theta_n - \alpha_n$, $\theta_n - \alpha_*$, and $\theta_n - \bar{\alpha}$ respectively.

- For each case the theorems imply the asymptotic error is mean 0 with variance μS,

- S is the solution to the Lyapunov equation $HS + SH' = -\tilde{\Sigma}$.

- More explicitly $S = \int_0^\infty \exp(Hs)\tilde{\Sigma} \exp(H's)ds$.
SIGN-ERROR ALGORITHM

We now return to the Sign-Error algorithm for analysis.

Algorithm 3 (SE)

A Sign-Error (SE) algorithm is of the form:

\[\theta_{n+1} = \theta_n + \mu \varphi_n \text{sgn}(y_n - \varphi'_n \theta_n). \]

- \(\text{sgn}(\cdot) \) operator taken on the residuals
- With appropriate choice of ‘training’ sequence for \(\varphi_n \), computations can be reduced to simple bit shifts
- Significant speed improvement from LMS and SR
- Hard operator on the residuals makes analysis more difficult
ASSUMPTIONS

A 2.1 (Markov Chain)

*Same as A 1.1; \(\alpha_n = \text{Markov chain with transition matrix} \)

\[P^\varepsilon = I + \varepsilon Q, \text{ etc...} \]

A 2.2 (Stationary Signals)

- \{ (\varphi_n, e_n) \} is stationary and independent of \{ \alpha_n \}.
- \(\varphi_n \) is bounded and \{ e_k \} is zero-mean.

Let \(\mathcal{F}_n \) be the \(\sigma \)-algebra generated by \{ (\varphi_j, e_j), \alpha_j : j < n; \alpha_n \}.
Denote the conditional expectation with respect to \(\mathcal{F}_n \) by \(E_n \).
A 2.3 (Locally Linear)

For each \(i = 1, \ldots, m_0 \), define

\[
\begin{align*}
 g_n & \triangleq \varphi_n \text{sgn}(\varphi'_n[\alpha_n - \theta_n] + e_n) \\
 g_n(\theta, i) & \triangleq \varphi_n \text{sgn}(\varphi'_n[a_i - \theta] + e_n) \mathbb{I}_{\{\alpha_n = a_i\}} \\
 \tilde{g}_n(\theta, i) & \triangleq E_n g_n(\theta, i)
\end{align*}
\]

For each \(n \) and \(i \), there is an \(A_n^{(i)} \in \mathbb{R}^{r \times r} \) such that given \(\alpha_n = a_i \),

\[
\begin{align*}
 \tilde{g}_n(\theta, i) &= A_n^{(i)}(a_i - \theta) \mathbb{I}_{\{\alpha_n = a_i\}} + o(|a_i - \theta| \mathbb{I}_{\{\alpha_n = a_i\}}) \\
 \mathbb{E}A_n^{(i)} &= A^{(i)}
\end{align*}
\]
A 2.4 (Linearization Mixing)

There is a sequence of non-negative real numbers \(\{\phi(k)\}\) with \(\sum_k \phi^{1/2}(k) < \infty\) such that for each \(n\) and each \(j > n\), and for some \(K > 0\),

\[
|E_n A_{j}^{(i)} - A^{(i)}| \leq K \phi^{1/2}(j - n) \tag{2}
\]

uniformly in \(i = 1, \ldots, m_0\).

- Boundedness only assumed on \(\varphi_n\), which is often deterministic anyway. Can also use expanding truncation to remove boundedness assumption.

- While \(g_n(\theta, i)\) is not smooth in \(\theta\), \(\tilde{g}_n(\theta, I) = E_n g_n(\theta, i)\) can be

- \(\tilde{g}_n(\theta, i)\) is locally (near \(a_i\)) linearizable if conditional joint density of \((\varphi_n, e_n)\) differentiable with bounded derivatives
With the stronger assumptions, we can obtain the same error bounds as before:

Theorem 2.1 (Mean-Square Error Bounds)

Assume A2.1 – A2.4. Then there is an $N_{\mu,\varepsilon} > 0$ such that for all $n \geq N_{\mu,\varepsilon}$,

$$
\mathbb{E}|\tilde{\theta}_n|^2 = \mathbb{E}|\alpha_n - \theta_n|^2 = O\left(\mu + \varepsilon + \varepsilon^2/\mu\right).
$$

For limit analysis, interpolate as before:

$$
\theta^\mu(t) \triangleq \theta_n, \quad \alpha^\mu(t) \triangleq \alpha_n \quad \text{for } t \in [n\mu, n\mu + \mu)
$$
On-Line Case: \(\varepsilon = O(\mu) \)

Theorem 2.2 (On-Line Limit)

Take \(\theta_n \) by the SE algorithm. Let \(\varepsilon = O(\mu) \) and assume A2.1 – A2.4. Then

\[
(\theta^\mu(\cdot), \alpha^\mu(\cdot)) \xrightarrow{w} (\theta(\cdot), \alpha(\cdot))
\]

such that \(\alpha(\cdot) \) is a continuous-time Markov chain with generator \(Q \) and \(\theta(\cdot) \) satisfies the Markov-switched ODE

\[
\frac{d}{dt} \theta(t) = A^{(\alpha(t))} (\alpha(t) - \theta(t)), \quad \theta(0) = \theta_0
\]
Slower M.C. Case: $\varepsilon \ll \mu$

In the case $\varepsilon \ll \mu$, the limit is again characterized by the initial distribution π_0 of α_0.

Theorem 2.3 (Slower M.C. Limit)

Let $\varepsilon = \mu^{1+\eta}$ for $0 < \eta \leq 1$ and assume A2.1 – A2.4. Then $\theta^\mu(\cdot) \xrightarrow{w} \theta(\cdot)$ such that $\theta(\cdot)$ is the solution to the ODE

$$
\frac{d}{dt} \theta(t) = \sum_{i=1}^{m_0} A^{(i)} \left(a_i - \theta(t) \right) \pi_{0,i}, \quad \theta(0) = \theta_0
$$
Fast M.C. Case: $\varepsilon \gg \mu$

In the case $\varepsilon \gg \mu$, the limit is characterized by the stationary distribution ν associated with Q.

Theorem 2.4

Fast M.C. Limit Let $\varepsilon = \mu^\gamma$ for $1/2 \leq \gamma < 1$ and assume $A2.1 – A2.4$. Then $\theta^\mu(\cdot) \xrightarrow{w} \theta(\cdot)$ such that $\theta(\cdot)$ is the solution to the ODE

$$
\frac{d}{dt} \theta(t) = \sum_{i=1}^{m_0} A^{(i)} (a_i - \theta(t)) \nu_i, \quad \theta(0) = \theta_0
$$
ON-LINE: $\varepsilon = O(\mu)$

Again define scaled error

$$u_n \triangleq \tilde{\theta}_n/\sqrt{\mu} = (\alpha_n - \theta_n)/\sqrt{\mu}$$

Then interpolate to

$$u^\mu(t) \triangleq u_n \text{ for } t \in [(n - N_\mu)\mu, (n - N_\mu)\mu + \mu]$$
ON-LINE: $\varepsilon = O(\mu) \ II$

Lemma 2.5 (CLT for Mixing Processes)

Define $\varpi_k \triangleq \varphi_k \text{sgn}(e_k)$. Then

$$
\sqrt{\mu} \sum_{j=0}^{(t/\mu)-1} \varpi_j \xrightarrow{w} \tilde{w}(t)
$$

where $\tilde{w}(t)$ is a Brownian motion with covariance $\tilde{\Sigma}t$ given by

$$
\tilde{\Sigma} \triangleq \mathbb{E}\varpi_0\varpi_0' + \sum_{j=1}^{\infty} \mathbb{E}\varpi_j\varpi_0' + \sum_{j=1}^{\infty} \mathbb{E}\varpi_0\varpi_j'.
$$
Theorem 2.6 (On-Line Limit Distribution)

If $\varepsilon = O(\mu)$ and under A2.1 – A2.4 $u^\mu(\cdot) \xrightarrow{w} u(\cdot)$ such that

$$du = -A^{(\alpha)} u dt - \tilde{\Sigma}^{1/2} dw,$$

where $w(\cdot)$ is a standard Brownian motion and $\alpha = \alpha(\cdot)$ is the continuous-time Markov chain associated with Q.
SLOWER M.C. : $\varepsilon \ll \mu I$

For the case $\varepsilon \ll \mu$, define

$$\alpha* \triangleq \sum_{i=1}^{m_0} a_i \pi_{0,i},$$

$$\nu_n \triangleq \frac{\alpha* - \theta_n}{\sqrt{\mu}}$$

$$\nu^\mu(t) \triangleq \nu_n \text{ for } t \in [(n - N_\mu)\mu, (n - N_\mu)\mu + \mu)$$

$$A^{(*)} \triangleq \sum_{i=1}^{m_0} A^{(i)} \pi_{0,i}.$$

Then we have the following.
Slower M.C. : \(\varepsilon \ll \mu \)

Theorem 2.7

Slower M.C. Limit Distribution
If \(\varepsilon = \mu^{1+\eta} \) for some \(0 < \eta \leq 1 \) and under A2.1 – A2.4 \(v^\mu(\cdot) \xrightarrow{w} v(\cdot) \) such that

\[
dv = -A^{(*)}vdt - \tilde{\Sigma}^{1/2}dw
\]

where \(w(\cdot) \) is a standard Brownian motion.
Fast M.C. : $\varepsilon \gg \mu$

For the case $\varepsilon \gg \mu$, define

$$\bar{\alpha} \triangleq \sum_{i=1}^{m_0} a_i \nu_i$$

$$z_n \triangleq \frac{\bar{\alpha} - \theta_n}{\sqrt{\mu}}$$

$$z'^\mu(t) \triangleq z_n \quad \text{for} \quad t \in [(n - N_\mu)\mu, (n - N_\mu)\mu + \mu)$$

$$\bar{A} \triangleq \sum_{i=1}^{m_0} A^{(i)} \nu_i.$$
Theorem 2.8

Fast M.C. Limit Distribution If \(\varepsilon = \mu^\gamma \) for some \(\frac{1}{2} \leq \gamma < 1 \) and under A2.1 – A2.4, \(z^\mu(\cdot) \overset{w}{\to} z(\cdot) \) such that

\[
dz = -\bar{A}zdt - \bar{\Sigma}^{1/2}dw
\]

where \(w(\cdot) \) is a standard Brownian motion.
SIMULATED PERFORMANCE RESULTS

- Here we ran simulations to demonstrate the performance (and convergence properties) of the algorithms in each of the cases.
- We fix the step size $\mu = .05$ and consider three cases:
 - $\epsilon = \frac{3}{5}\mu$ ($\epsilon = O(\mu)$)
 - $\epsilon = \mu^2$ (Slow Markov chain)
 - $\epsilon = \sqrt{\mu}$ (Fast Markov chain).
- Take state space $\mathcal{M} = \{-1, 0, 1\}$ with transition matrix $P^\epsilon = I + \epsilon Q$, where

$$Q = \begin{bmatrix}
-0.6 & 0.4 & 0.2 \\
0.2 & -0.5 & 0.3 \\
0.4 & 0.1 & -0.5
\end{bmatrix}.$$

and thus has $\nu = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
Hence \(\bar{\alpha} = \sum_{i=1}^{3} a_i \nu_i = 0 \)

Initial distribution \(\pi_0 = (3/4, 1/8, 1/8) \). So \(\alpha^* = \sum_{i=1}^{3} a_i \pi_{0,i} = -0.625 \).

Take \(\{\varphi_n\} \) and \(\{e_n\} \) are i.i.d. \(\mathcal{N}(0, 1) \) and \(\mathcal{N}(0, .25) \), respectively.

We proceed to observe 1000 iterations of the algorithm for the cases \(\varepsilon = O(\mu) \) and \(\varepsilon \gg \mu \), and 10,000 iterations for the case \(\varepsilon \ll \mu \) (in order to illustrate some variations of the parameter).
Parameter and Estimates: $\varepsilon = O(\mu)$
Parameter and Estimates: $\varepsilon \ll \mu$
Parameter and Estimates: $\varepsilon \gg \mu$
Average of Parameter and Estimates over time: $\varepsilon \gg \mu$: Convergence to stationary mean
Scaled error z_n with $\varepsilon \gg \mu$: Diffusion Behavior
Impact of Unmodeled Dynamics I

- Often, models can be mismatched; e.g. the true system dynamics are higher dimensional than the modeled system

\[y_n = \varphi'_n \alpha_n + e_n \]
\[= \tilde{\varphi}'_n \tilde{\alpha}_n + \tilde{\varphi}'_n \tilde{\alpha}_n + e_n \]

- \(\tilde{\varphi}_n, \tilde{\alpha}_n \) modeled parts ; \(\tilde{\varphi}_n, \tilde{\alpha}_n \) unmodeled parts

- Take \(\varphi_n \) i.i.d. 7-dimensional \(\mathcal{N}(3, 1) \) with modeled part \(\tilde{\varphi}_n \)
 4-dimensional, errors \(e_n \sim \mathcal{N}(0, 0.25) \) as before

- Markov chain has state space \(\mathcal{M} = \{-\rho, 0, \rho\} \) where
 \(\rho = [1, 2^{-1}, \ldots, 2^{-6}] \in \mathbb{R}^7 \).
Impact of Unmodeled Dynamics II

- Transition matrix $P^{ε} = I + εQ$, initial π_0 and stationary $ν$ distributions as before

- Examine the SE algorithm for computing estimates of the modeled part of the parameter $\hat{α}$

$$\theta_{n+1} = \theta_n + \bar{φ}_n \text{sgn}(y_n - \bar{φ}_n' \theta_n) \in \mathbb{R}^4$$
Norm difference of modeled parameter and estimate $||\tilde{\alpha}_n - \theta_n||$ for $\varepsilon = O(\mu)$.
Average Norm Difference $||\bar{\alpha}_n - \bar{\theta}_n||$ over time for $\varepsilon = O(\mu)$.
Average Norm Difference $||\tilde{\alpha} - \tilde{\alpha}_n||$ and $||\hat{\alpha} - \hat{\theta}_n||$ over time for $\varepsilon \gg \mu$.
NOISE ATTENUATION WITH UNMODELED DYNAMICS

- We can see mismatched models results in larger deviation from the limit
- Oftentimes, output y_t is a combination of *all* previous input signals x_t, e.g.
 \[y_t = \sum_{j=0}^{\infty} x_{t-j} \alpha_j \]
- However, in practice usually assume a finite model order n; that is
 \[y_t = \sum_{j=0}^{n} x_{t-j} \alpha_j \]
- Difference between actual system order and model order introduces bias
- For tractability, one assumes some bound ρ_n on the unmodeled bias ($\rho_n \rightarrow 0$ as n increases)
LINEAR REGULATOR PROBLEM

The original regulation problem

- P: Linear Time-Invariant Plant
 F: Feedback Controller
 d: output disturbance (stochastic)

- Want to control so output signal x follows constant reference value x_r
Sign-Regressor Algorithms

Sign-Error Algorithms

Noise Attenuation

Formulation

- Since system is LTI, we can write

\[X(z) = \frac{F(z)P(z)}{1 + F(z)P(z)} X_r(z) + \frac{1}{1 + F(z)P(z)} D(z) \]

\[= U(z) + \frac{1}{1 + F(z)P(z)} D(z) \]

- Writing \(y_k = x_k - x_r \), we have

\[Y(z) = (U(z) - X_r(z)) + \frac{1}{1 + F(z)P(z)} D(z) \]

- If controller is \(F \) stabilizing, first term goes to zero exponentially fast. For purposes of persistent noise attenuation, ignore first term and write

\[Y(z) = \frac{1}{1 + F(z)P(z)} D(z) \]
A basic feedback configuration for noise attenuation

- Assume $P(z)$ is exponentially stable and write

$$P(z) = p_0 + p_1 z^{-1} + \cdots + p_n z^{-n} + \delta(z)$$

where $\delta(z) = \sum_{j=n+1}^{\infty} p_j z^{-j}$ and $\sum_{j=n+1}^{\infty} |p_j| \leq \rho_n$

- By exp. stability, $|\rho_n| \leq \kappa \lambda^n$ for some $\kappa > 0$ and $0 < \lambda < 1$
Write:

\[p = [p_0, \ldots, p_n]' = \text{modeled plant} \]

\[p^* = [p_{n+1}, p_{n+2}, \ldots]' = \text{unmodeled plant} \]

\[\psi'_k = [d_k, d_{k-1}, \ldots, d_{k-n}] \]

\[\tilde{\psi}'_k = [d_{k-(n+1)}, \ldots] \]

\[w_k = \sum_{j=0}^{\infty} p_j d_{k-j} = \psi'_k p + \tilde{\psi}'_k p^* \]

Taking \(Q = \frac{F}{1+FP} \) and assuming \(Q \) is a stable FIR filter of order \(m \), we can write

\[y_k = d_k - Q * w_k \]

\[= d_k - [w_k, w_{k-1}, \ldots, w_{k-m}][q_0, q_1, \ldots, q_m]' \]

\[= d_k - \phi'_k \theta, \]

where \(\phi'_k = [w_k, w_{k-1}, \ldots, w_{k-m}] \).
A 3.1 (Disturbance and measurement errors)

(1) d_k is estimated by $\hat{d}_k = d_k + e_k$.
e_k is stationary, $\mathbb{E}e_k = 0$, $\mathbb{E}e_k^2 \leq \sigma^2 < \infty$.
(2) The modeled part p is known. The unmodeled dynamics p^* has a uniform norm bound ρ_n.

Write

$$\xi'_k = [e_k, e_{k-1}, \ldots, e_{k-n}] \quad \hat{\psi}'_k = \psi'_k + \xi'_k$$
$$\hat{w}_k = \hat{\psi}'_k p \quad \tilde{\varepsilon}_k = -\xi'_k p + \hat{\psi}'_k p^*$$
$$\hat{\phi}'_k = [\hat{w}_k, \hat{w}_{k-1}, \ldots, \hat{w}_{k-m}] \quad \zeta'_k = [\tilde{\varepsilon}_k, \tilde{\varepsilon}_{k-1}, \ldots, \tilde{\varepsilon}_{k-m}]$$

Then

$$y_k = d_k - [w_k, w_{k-1}, \ldots, w_{k-m}] [q_0, q_1, \ldots, q_m]'$$
$$= \hat{d}_k - e_k - [\hat{w}_k + \tilde{\varepsilon}_k, \hat{w}_{k-1} + \tilde{\varepsilon}_{k-1}, \ldots, \hat{w}_{k-m} + \tilde{\varepsilon}_{k-m}] [q_0, q_1, \ldots, q_m]'$$
$$= \hat{d}_k - e_k - \hat{\phi}'_k \theta - \zeta'_k \theta,$$
Matrix Expansion

For estimation, after N observations available regression data are

$$\hat{D}_N = \begin{bmatrix} \hat{d}_1 \\ \vdots \\ \hat{d}_N \end{bmatrix}; \quad \hat{\Phi}_N = \begin{bmatrix} \hat{\phi}'_1 \\ \vdots \\ \hat{\phi}'_N \end{bmatrix}. $$

Writing

$$\Phi_N = \begin{bmatrix} \phi'_1 \\ \vdots \\ \phi'_N \end{bmatrix}; \quad \Xi_N = \begin{bmatrix} \zeta'_1 \\ \vdots \\ \zeta'_N \end{bmatrix}; \quad E_N = \begin{bmatrix} e_1 \\ \vdots \\ e_N \end{bmatrix},$$

so that $\Phi_N = \hat{\Phi}_N + \Xi_N$, we have

$$\gamma_N = \hat{D}_N - E_N - \hat{\Phi}_N \theta - \Xi_N \theta.$$
Signal Estimation Phase

- Suppose d_k stationary with annihilating filter $H(z)$ such that $H(z)D(z) \approx 0$

- Then the plant output v_k will be $V(z) = \frac{FP}{1+FPH}HD \approx 0$.

- So subsequent control design should use signal

$$y_k = \hat{d}_k = d_k + e_k$$
After a controller F is (successfully) designed and implemented, the output $y_k = x_k - x_r$ will be small due to the rejection of disturbance by the feedback system.

In this case y_k will have (nearly) no information which can be utilized for the control design.

Use of open-loop control for signal estimation when the plant is stable. $K = P(1)$
TWO-PHASE APPROACH

Signal Estimation and Control Design:
- Noises pass through to the output to be estimated.
- Control is designed by an LS-type algorithm.

Two Phase Approach: (1) Signal Estimation and (2) Noise Rejection
To focus on unmodeled dynamics, take $e_k \equiv 0$

Then observation equation is simplified to

$$Y_N = D_N - (\hat{\Phi}_N + \Xi_N)\theta,$$

with

$$\hat{\Phi}_N = \begin{bmatrix} \hat{\phi}_1' \\ \vdots \\ \hat{\phi}_N' \end{bmatrix}, \quad \Xi_N = \begin{bmatrix} \zeta_1' \\ \vdots \\ \zeta_N' \end{bmatrix}$$

and $\hat{\phi}_k' = [\psi_k'p, \psi_{k-1}'p, \ldots, \psi_{k-m}'p]$ and $\zeta_k' = [\tilde{\psi}_k'p^*, \tilde{\psi}_{k-1}'p^*, \ldots, \tilde{\psi}_{k-m}'p^*]$.

$\Gamma \subset \mathbb{R}^{N \times m}$ denotes the uncertainty set for Ξ_N which accommodates all unmodeled dynamics $p^* = \{p_j\}_{j=n+1}^\infty$ with $\sum_{j=n+1}^\infty |p_j| \leq \rho_n$.
To minimize the mean-square error
\[\min_{\theta} (D_N - \hat{\Phi}_N \theta)'(D_N - \hat{\Phi}_N \theta), \]
design control parameter
\[\theta_N \triangleq \left(\hat{\Phi}_N' \hat{\Phi}_N \right)^{-1} \hat{\Phi}_N' D_N. \]

Analyze performance by residual
\[\mu_N(\Xi_N, D_N) \triangleq \frac{1}{N} (D_N - (\hat{\Phi}_N + \Xi_N)\theta_N)'(D_N - (\hat{\Phi}_N + \Xi_N)\theta_N) \]
\[\mu_N(D_n) \triangleq \max_{\Xi_N \in \Gamma} \mu(\Xi_N, D_N). \]

A 3.2 (Bounded Disturbance Variance)

The N-sample path of the disturbances \(D_N \) satisfies
\[D_N \in M_D \triangleq \{ \| D_N / \sqrt{N} \|_2 \leq \sigma^2 \}. \]
Let $\|D_N/\sqrt{N}\|_2 = \lambda$ and define the $v_N \triangleq \frac{D_N/\sqrt{N}}{\lambda}$, so $\hat{\Phi}_N(D_N) = \sqrt{N}\lambda \hat{\Phi}_N(v_N)$.

Denote σ_{min} as the smallest singular value of a matrix and $b_{\text{min}} \triangleq \min_{\|v_N\|_2=1} \sigma_{\text{min}}(\hat{\Phi}_N(v_N))$.

Write $f(\rho_N) \triangleq \max_{\Xi_N \in \Gamma} \frac{\|\Xi_N\|}{\sqrt{N}}$.

Theorem 3.1 (Worst-Case Performance)

The worst-case disturbance attenuation performance is given by

$$
\mu \triangleq \max_{D_N \in M_D} \mu_N(D_N) \leq \frac{f(\rho_N)}{b_{\text{min}}}
$$
One might also consider the “min-max” performance

\[
\eta_N(D_N, \theta_N) \triangleq \frac{1}{N} \max_{\Xi_N \in \Gamma} (D_N - (\hat{\Phi}_N + \Xi_N)\theta_N)'(D_N - (\hat{\Phi}_N + \Xi_N)\theta_N)
\]

\[
\eta_N(D_N) \triangleq \min_{\theta_N} \eta_N(D_N, \theta_N)
\]

Note that \(\eta_N(D_N) \leq \mu_N(D_N) \)

“min max” designs often lead to non-linear (even non-quadratic) optimization problems, where only numerical solutions feasible

Use gradient-descent approach:

\[
G(D_N, \theta_N) \triangleq \frac{\partial \eta_N(D_N, \theta_N)}{\partial \theta_N} = \frac{2}{N} \max_{\Xi_N \in \Gamma} (\hat{\Phi}_N + \Xi_N)'(D_N - (\hat{\Phi}_N + \Xi_N)\theta_N).
\]
Algorithm 4 (Two-Phase Algorithm)

The following algorithm searches for $\theta^*_N = \arg \min_{\theta_N} \eta(D_n, \theta_N)$ in two phases:

- **Initial Value.**
 The initial value θ^0 is given by the nominal design
 \[
 \theta^0 = \left(\hat{\Phi}_N \hat{\Phi}_N \right)^{-1} \hat{\Phi}_N D_N.
 \]

- **Iteration Steps.**
 For $k = 0, 1, 2, \ldots$,
 \[
 \theta^{k+1} = \theta^k - \beta_k \hat{G}(D_N, \theta^k)
 \]
 where β_k is the step size at the kth iteration, $\hat{G}(D_N, \theta^k)$ is an approximate gradient (obtained by using Monte Carlo methods or grid calculation in place of the uncertainty set Γ).
Impact of Signal Estimation Errors

A 3.3 (Measurement Errors)

1. \(\{d_k\}\) is a sequence of i.i.d. random variables satisfying \(\mathbb{E}d_k = 0\) and \(\mathbb{E}d_k^2 = \sigma_d^2 < \infty\). The fourth moment of \(d_k\) is finite: \(\mathbb{E}d_k^4 < \infty\).

2. \(\{d_k\}\) is estimated by \(\hat{d}_k = d_k + e_k\) such that \(\{e_k\}\) is a sequence of independent and identically distributed (i.i.d.) random variables with \(\mathbb{E}e_k = 0\) and \(\mathbb{E}e_k^2 = \sigma_e^2 < \infty\). \(\{e_k\}\) is independent of \(\{d_k\}\).

3. The modeled part \(p\) is known. The unmodeled dynamics \(p^*\) has a uniform norm bound \(\rho_n\).
LIMIT WITH MEASUREMENT ERRORS I

Define nominal design with measurement errors and unmodeled dynamics

\[
\theta^e_n \equiv (\hat{\Phi}'_N \hat{\Phi}_N)^{-1} \hat{\Phi}'_N \hat{D}_N = ((\Phi_N - \Xi_N)'(\Phi_N - \Xi_N))^{-1} (\Phi'_N - \Xi'_N)(D_N + E_N)
\]

Write

\[
P^0_n = \begin{bmatrix}
\sum_{j=0}^{n-|l_2-l_1|} p_j p_j + |l_2-l_1| \\
\end{bmatrix}
\]

Then we can formulate the limit of the estimate \(\theta^e_N\) in terms of \(P^0_n\) as follows.
Limit with Measurement Errors II

Proposition 3.2

Under A3.3, assuming $P_0 \mathbf{n}$ is full rank, we have

$$\theta^e_N = \left[\hat{\Phi}'_N \hat{\Phi}_N \right]^{-1} \hat{\Phi}'_N \hat{D}_N \xrightarrow{a.s.} \left[P_0^0 \right]^{-1} \begin{bmatrix} p_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \text{ as } N \to \infty.$$
LIMIT WITHOUT MEASUREMENT ERRORS I

Without measurement errors, the estimates are simplified to

\[\theta_N^0 = (\Phi_N' \Phi_N)^{-1} \Phi_N' D_N \]

Denote

\[P_n = \left[\sum_{j=0}^{\infty} p_j p_j + |l_2 - l_1| \right]_{l_1, l_2 = 0, 1, \ldots, n} \]

As before, we can formulate the limit of \(\theta_N^e \) in terms of \(P_n \) as follows.
Proposition 3.3

Under A3.3 and assuming P_n is full rank, we have

$$
\theta^0_N = \left[\Phi'_N \Phi_N \right]^{-1} \Phi_N D_N \xrightarrow{a.s.} [P_n]^{-1} \begin{bmatrix} p_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{as } N \to \infty.
$$
Theorem 3.4

Under the assumptions of Propositions 3.2 and 3.3 and assuming that $P_0^n - P_n$ is invertible, we have

$$
\theta^e_N - \theta^0_N \xrightarrow{a.s.} [P_0^n - P_n]^{-1} \begin{bmatrix}
p_0 \\
0 \\
\vdots \\
0
\end{bmatrix}
$$

where

$$
-[P_0^n - P_n]_{l_1,l_2} = \sum_{j=n-|l_2-l_1|+1}^{\infty} p_j p_{j+|l_2-l_1|}.
$$
Defining

\[\rho_n^{(l)} \triangleq \sum_{j=n+1}^{\infty} p_{j-l} p_j \leq \sum_{j=n+1}^{\infty} |p_j| \leq \rho_n \]

for sufficiently large \(n \), we see that

\[
[P^0_n - P_n]^{-1} = -\begin{bmatrix}
\rho_n^{(0)} & \rho_n^{(1)} & \rho_n^{(2)} & \cdots & \rho_n^{(n)} \\
\rho_n^{(1)} & \rho_n^{(0)} & \rho_n^{(1)} & \cdots & \rho_n^{(n-1)} \\
\rho_n^{(2)} & \rho_n^{(1)} & \rho_n^{(0)} & \cdots & \rho_n^{(n-2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_n^{(n)} & \rho_n^{(n-1)} & \cdots & \rho_n^{(1)} & \rho_n^{(0)}
\end{bmatrix}^{-1}
\]

for \(l = |l_2 - l_1| \in \{0, 1, \ldots, n\} \).
Example: Nominal Design with Unmodeled Dynamics

- 7th order system \(P(z) = p_0 + p_1 z^{-1} + \cdots + p_7 z^{-7} \)
- 3rd order model: \(P_0(z) = p_0 + p_1 z^{-1} + p_1 z^{-2} + p_3 z^{-3} \)
- Take \(\rho = 0.6 \)
- \(d_k \) i.i.d. uniformly distributed in \([-1, 1]\) (observable);
- \(N = 1000 \) observations
Uncertainty set Γ generated by Monte Carlo method. Randomly generate 200 values of p^*, normalized so that $|p_4| + |p_5| + |p_6| + |p_7| = 0.6$. Corresponding Ξ_N matrices give Γ.

Controller has order $m = 20$ ($\theta \in \mathbb{R}^{21}$),

$$\theta_N = \left(\hat{\Phi}_N^\prime \hat{\Phi}_N\right)^{-1} \hat{\Phi}_N^\prime D_N$$

Measure performance by noise-attenuation factor

$$\gamma = \frac{\|Y_N\|_2}{\|D_N\|_2/N}$$

$\gamma < 1$ indicates noise attenuation, the smaller the better

$\rho = 0 \sim \gamma = 0.0148$ (98.5% noise attenuation)

$\rho = 0.6 \sim \gamma = 0.2943$ (70.1% noise attenuation)
Impact of Unmodeled Dynamics

<table>
<thead>
<tr>
<th>ρ</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.0570</td>
<td>0.1464</td>
<td>0.2512</td>
<td>0.3459</td>
<td>0.4493</td>
</tr>
<tr>
<td>Reduction</td>
<td>94.3%</td>
<td>85.4%</td>
<td>74.9%</td>
<td>65.4%</td>
<td>55.1%</td>
</tr>
</tbody>
</table>
EXAMPLE: IMPACT OF MEASUREMENT ERRORS

- Plant IIR, $p_k = (0.5)^k$ for $k = 0, 1, \ldots, \infty$

- Model order $n = 10$, Controller order $m = 10$

- Thus $\rho_n = 2 - \sum_{k=0}^{10} p_k = (0.5)^{10} \approx 9.8 \times 10^{-4}$

- Observe estimates for θ^e_N, θ^0_N for $N = 10, 20, \ldots, 1010$ (100 updates).
Impact of estimation errors given by $||\theta^e_N - \theta^0_N||$, $N = Kn = 10, \ldots, 1010$
Thanks!