Abstract

Let G be a finite group. Artin’s theorem says that we can recover the complex representation ring of G from the representations of the cyclic subgroups of G up to torsion, or additive nilpotence. Quillen’s F-isomorphism theorem says that we can recover the mod-p cohomology of G from the mod-p cohomology of the elementary abelian p-subgroups of G up to multiplicative nilpotence.

These results naturally fit into Dress’s theory of induction/restriction for Mackey and Green functors. These particular Mackey functors arise as the homotopy groups of G-spectra and it is relatively straightforward to lift Dress’s framework to G-spectra. In this derived framework we associate to each family F of subgroups of G a subcategory F-nil, of G-spectra with the following properties: If $E \in F$-nil then: 1) A generalized version of Artin’s induction/restriction theorem holds for E-equivariant (co)homology. 2) If E is a homotopy commutative ring spectrum, then a generalization of Quillen’s F-isomorphism theorem holds for E-equivariant cohomology of G-spaces. 3) If E is an E_{∞} ring spectrum then we can recover the category of G-equivariant E-modules from the categories of H-equivariant E-modules as H varies over F.

Moreover the category F-nil is closed under finite homotopy (co)limits, retracts, and (co)tensors with arbitrary G-spectra. Our theory applies to genuine equivariant complex and real K-theory (extending Artin’s theorem and a result of Fausk), and the Borel equivariant cohomology theories associated to mod-p cohomology (extending...
the result of Quillen), integral cohomology (extending a result of Carlson), complex oriented theories (extending a result of Hopkins-Kuhn-Ravenel), ko, the many variants of topological modular forms, L_n-local spectra, and classical cobordism theories.

This is joint work with Akhil Mathew and Niko Naumann.